Do you want to publish a course? Click here

A block Recycled GMRES method with investigations into aspects of solver performance

128   0   0.0 ( 0 )
 Added by Kirk Soodhalter
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We propose a block Krylov subspace version of the GCRO-DR method proposed in [Parks et al. SISC 2005], which is an iterative method allowing for the efficient minimization of the the residual over an augmented block Krylov subspace. We offer a clean derivation of the method and discuss methods of selecting recycling subspaces at restart as well as implementation decisions in the context of high-performance computing. Numerical experiments are split into those demonstrating convergence properties and those demonstrating the data movement and cache efficiencies of the dominant operations of the method, measured using processor monitoring code from Intel.



rate research

Read More

237 - Kirk M. Soodhalter 2014
We analyze the the convergence behavior of block GMRES and characterize the phenomenon of stagnation which is then related to the behavior of the block FOM method. We generalize the block FOM method to generate well-defined approximations in the case that block FOM would normally break down, and these generalized solutions are used in our analysis. This behavior is also related to the principal angles between the column-space of the previous block GMRES residual and the current minimum residual constraint space. At iteration $j$, it is shown that the proper generalization of GMRES stagnation to the block setting relates to the columnspace of the $j$th block Arnoldi vector. Our analysis covers both the cases of normal iterations as well as block Arnoldi breakdown wherein dependent basis vectors are replaced with random ones. Numerical examples are given to illustrate what we have proven, including a small application problem to demonstrate the validity of the analysis in a less pathological case.
It is well-established that any non-increasing convergence curve is possible for GMRES and a family of pairs $(A,b)$ can be constructed for which GMRES exhibits a given convergence curve with $A$ having arbitrary spectrum. No analog of this result has been established for block GMRES, wherein multiple right-hand sides are considered. By reframing the problem as a single linear system over a ring of square matrices, we develop convergence results for block Arnoldi and block GMRES. In particular, we show what convergence behavior is admissible for block GMRES and how the matrices and right-hand sides producing any admissible behavior can be constructed. Moreover, we show that the convergence of the block Arnoldi method for eigenvalue approximation can be almost fully independent of the convergence of block GMRES for the same coefficient matrix and the same starting vectors.
Consider using the right-preconditioned generalized minimal residual (AB-GMRES) method, which is an efficient method for solving underdetermined least squares problems. Morikuni (Ph.D. thesis, 2013) showed that for some inconsistent and ill-conditioned problems, the iterates of the AB-GMRES method may diverge. This is mainly because the Hessenberg matrix in the GMRES method becomes very ill-conditioned so that the backward substitution of the resulting triangular system becomes numerically unstable. We propose a stabilized GMRES based on solving the normal equations corresponding to the above triangular system using the standard Cholesky decomposition. This has the effect of shifting upwards the tiny singular values of the Hessenberg matrix which lead to an inaccurate solution. Thus, the process becomes numerically stable and the system becomes consistent, rendering better convergence and a more accurate solution. Numerical experiments show that the proposed method is robust and efficient for solving inconsistent and ill-conditioned underdetermined least squares problems. The method can be considered as a way of making the GMRES stable for highly ill-conditioned inconsistent problems.
120 - Kirk M. Soodhalter 2014
We present two minimum residual methods for solving sequences of shifted linear systems, the right-preconditioned shifted GMRES and shifted recycled GMRES algorithms which use a seed projection strategy often employed to solve multiple related problems. These methods are compatible with general preconditioning of all systems, and when restricted to right preconditioning, require no extra applications of the operator or preconditioner. These seed projection methods perform a minimum residual iteration for the base system while improving the approximations for the shifted systems at little additional cost. The iteration continues until the base system approximation is of satisfactory quality. The method is then recursively called for the remaining unconverged systems. We present both methods inside of a general framework which allows these techniques to be extended to the setting of flexible preconditioning and inexact Krylov methods. We present some analysis of such methods and numerical experiments demonstrating the effectiveness of the algorithms we have derived.
Block coordinate descent (BCD) methods approach optimization problems by performing gradient steps along alternating subgroups of coordinates. This is in contrast to full gradient descent, where a gradient step updates all coordinates simultaneously. BCD has been demonstrated to accelerate the gradient method in many practical large-scale applications. Despite its success no convergence analysis for inverse problems is known so far. In this paper, we investigate the BCD method for solving linear inverse problems. As main theoretical result, we show that for operators having a particular tensor product form, the BCD method combined with an appropriate stopping criterion yields a convergent regularization method. To illustrate the theory, we perform numerical experiments comparing the BCD and the full gradient descent method for a system of integral equations. We also present numerical tests for a non-linear inverse problem not covered by our theory, namely one-step inversion in multi-spectral X-ray tomography.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا