Orbit Closures and Invariants


Abstract in English

Let G be a reductive linear algebraic group, H a reductive subgroup of G and X an affine G-variety. Let Y denote the set of fixed points of H in X, and N(H) the normalizer of H in G. In this paper we study the natural map from the quotient of Y by N(H) to the quotient of X by G induced by the inclusion of Y in X. We show that, given G and H, this map is a finite morphism for all G-varieties X if and only if H is G-completely reducible (in the sense defined by J-P. Serre); this was proved in characteristic zero by Luna in the 1970s. We discuss some applications and give a criterion for the map of quotients to be an isomorphism. We show how to extend some other results in Lunas paper to positive characteristic and also prove the following theorem. Let H and K be reductive subgroups of G; then the double coset HgK is closed for generic g in G if and only if the intersection of generic conjugates of H and K is reductive.

Download