Do you want to publish a course? Click here

Magneto-optical signature of massless Kane electrons in Cd3As2

98   0   0.0 ( 0 )
 Added by Milan Orlita
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on optical reflectivity experiments performed on Cd3As2 over a broad range of photon energies and magnetic fields. The observed response clearly indicates the presence of 3D massless charge carriers. The specific cyclotron resonance absorption in the quantum limit implies that we are probing massless Kane electrons rather than symmetry-protected 3D Dirac particles. The latter may appear at a smaller energy scale and are not directly observed in our infrared experiments.



rate research

Read More

The Landau level laser has been proposed a long time ago as a unique source of monochromatic radiation, widely tunable in the THz and infrared spectral ranges using an externally applied magnetic field. In spite of decades of efforts, this appealing concept never resulted in the design of a reliable device. This is due to efficient Auger scattering of Landau-quantized electrons, which is an intrinsic non-radiative recombination channel that eventually gains over cyclotron emission in all materials studied so far: in conventional semiconductors with parabolic bands, but also in graphene with massless electrons. The Auger processes are favored in these systems by Landau levels (or their subsets) equally spaced in energy. Here we show that this scheme does not apply to massless Kane electrons in gapless HgCdTe alloy, in which undesirable Auger scattering is strongly suppressed and the sizeable cyclotron emission observed, for the first time in the case of massless particles. The gapless HgCdTe thus appears as a material of choice for future technology of Landau level lasers.
The low-frequency magneto-optical properties of bilayer Bernal graphene are studied by the tight-binding model with four most important interlayer interactions taken into account. Since the main features of the wave functions are well depicted, the Landau levels can be divided into two groups based on the characteristics of the wave functions. These Landau levels lead to four categories of absorption peaks in the optical absorption spectra. Such absorption peaks own complex optical selection rules and these rules can be reasonably explained by the characteristics of the wave functions. In addition, twin-peak structures, regular frequency-dependent absorption rates and complex field-dependent frequencies are also obtained in this work. The main features of the absorption peaks are very different from those in monolayer graphene and have their origin in the interlayer interactions.
Cadmium arsenide (Cd3As2) has recently became conspicuous in solid-state physics due to several reports proposing that it hosts a pair of symmetry-protected 3D Dirac cones. Despite vast investigations, a solid experimental insight into the band structure of this material is still missing. Here we fill one of the existing gaps in our understanding of Cd3As2, and based on our Landau level spectroscopy study, we provide an estimate for the energy scale of 3D Dirac electrons in this system. We find that the appearance of such charge carriers is limited - contrary to a widespread belief in the solid-state community - to a relatively small energy scale (below 40 meV).
Solid state physics and quantum electrodynamics with its ultra-relativistic (massless) particles meet, to their mutual beneit, in the electronic properties of one-dimensional carbon nanotubes as well as two-dimensional graphene or surfaces of topological insulators. However, clear experimental evidence for electronic states with conical dispersion relations in all three dimensions, conceivable in certain bulk materials, is still missing. In the present work, we fabricate and study a zinc-blend crystal, HgCdTe, at the point of the semiconductor-to-semimetal topological transition. Three-dimensional massless electrons with a velocity of about 10$^6$ m/s are observed in this material, as testifed by: (i) the dynamical conductivity which increases linearly with the photon frequency, (ii) in a magnetic field $B$, by a $sqrt{B}$ dependence of dipole-active inter-Landau-level resonances and (iii) the spin splitting of Landau levels, which follows a $sqrt{B}$ dependence, typical of ultra-relativistic particles but not really seen in any other electronic system so far.
We measured the optical reflectivity of [001]-oriented $n$-doped Cd$_{3}$As$_{2}$ in a broad frequency range (50 - 22000 cm$^{-1}$) for temperatures from 10 to 300 K. The optical conductivity, $sigma(omega) = sigma_{1}(omega) + {rm i}sigma_{2}(omega)$, is isotropic within the (001) plane; its real part follows a power law, $sigma_{1}(omega) propto omega^{1.65}$, in a large interval from 2000 to 8000 cm$^{-1}$. This behavior is caused by interband transitions between two Dirac bands, which are effectively described by a sublinear dispersion relation, $E(k) propto lvert k rvert ^{0.6}$. The momentum-averaged Fermi velocity of the carriers in these bands is energy dependent and ranges from $1.2 times 10^{5}$ to $3 times 10^{5}$ m/s, depending on the distance from the Dirac points. We detect a gaplike feature in $sigma_{1}(omega)$ and associate it with the Fermi level positioned around $100$ meV above the Dirac points.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا