Stellar Variability and Flare Rates from Dome A, Antarctica using 2009 and 2010 CSTAR Observations


Abstract in English

The Chinese Small Telescope ARray (CSTAR) carried out high-cadence time-series observations of 20.1 square degrees centered on the South Celestial Pole during the 2008, 2009 & 2010 winter seasons from Dome A in Antarctica. The nearly-continuous 6 months of dark conditions during each observing season allowed for >10^6 images to be collected through gri and clear filters, resulting in the detection of >10^4 sources over the course of 3 years of operation. The nearly space-like conditions in the Antarctic plateau are an ideal testbed for the suitability of very small-aperture (<20 cm) telescopes to detect transient events, variable stars and stellar flares. We present the results of a robust search for such objects using difference image analysis of the data obtained during the 2009 & 2010 winter seasons. While no transients were found, we detected 29 flaring events and find a normalized flaring rate of 5+-4x10^-7 flare/hour for late-K dwarfs, 1+-1x10^-6 flare/hour for M dwarfs and 7+-1x10^-7 flare/hour for all other stars in our sample. We suggest future small-aperture telescopes planned for deployment at Dome A would benefit from a tracking mechanism, to help alleviate effects from ghosting, and a finer pixel scale, to increase the telescopes sensitivity to faint objects. We find that the light curves of non-transient sources have excellent photometric qualities once corrected for systematics, and are limited only by photon noise and atmospheric scintillation.

Download