Do you want to publish a course? Click here

Interaction-driven Lifshitz transition with dipolar fermions in optical lattices

210   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Anisotropic dipole-dipole interactions between ultracold dipolar fermions break the symmetry of the Fermi surface and thereby deform it. Here we demonstrate that such a Fermi surface deformation induces a topological phase transition -- so-called Lifshitz transition -- in the regime accessible to present-day experiments. We describe the impact of the Lifshitz transition on observable quantities such as the Fermi surface topology, the density-density correlation function, and the excitation spectrum of the system. The Lifshitz transition in ultracold atoms can be controlled by tuning the dipole orientation and -- in contrast to the transition studied in crystalline solids -- is completely interaction-driven.



rate research

Read More

We experimentally implement the Harper Hamiltonian for neutral particles in optical lattices using laser-assisted tunneling and a potential energy gradient provided by gravity or magnetic field gradients. This Hamiltonian describes the motion of charged particles in strong magnetic fields. Laser-assisted tunneling processes are characterized by studying the expansion of the atoms in the lattice. The band structure of this Hamiltonian should display Hofstadters butterfly. For fermions, this scheme should realize the quantum Hall effect and chiral edge states.
141 - Fei Lin , V.W. Scarola 2012
Pairing between spinless fermions can generate Majorana fermion excitations that exhibit intriguing properties arising from non-local correlations. But simple models indicate that non-local correlation between Majorana fermions becomes unstable at non-zero temperatures. We address this issue by showing that anisotropic interactions between dipolar fermions in optical lattices can be used to significantly enhance thermal stability. We construct a model of oriented dipolar fermions in a square optical lattice. We find that domains established by strong interactions exhibit enhanced correlation between Majorana fermions over large distances and long times even at finite temperatures, suitable for stable redundancy encoding of quantum information. Our approach can be generalized to a variety of configurations and other systems, such as quantum wire arrays.
73 - C. Walsh , P. Semon , G. Sordi 2019
Phase transitions and their associated crossovers are imprinted in the behavior of fluctuations. Motivated by recent experiments on ultracold atoms in optical lattices, we compute the thermodynamic density fluctuations $delta N^2$ of the two-dimensional fermionic Hubbard model with plaquette cellular dynamical mean-field theory. To understand the length scale of these fluctuations, we separate the local from the nonlocal contributions to $delta N^2$. We determine the effects of particle statistics, interaction strength $U$, temperature $T$ and density $n$. At high temperature, our theoretical framework reproduces the experimental observations in the doping-driven crossover regime between metal and Mott insulator. At low temperature, there is an increase of thermodynamic density fluctuations, analog to critical opalescence, accompanied by a surprising reduction of the absolute value of their nonlocal contributions. This is a precursory sign of an underlying phase transition between a pseudogap phase and a metallic phase in doped Mott insulators, which should play an important role in the cuprate high-temperature superconductors. Predictions for ultracold atom experiments are made.
Quantum spin liquids (QSLs) define an exotic class of quantum ground states where spins are disordered down to zero temperature. We propose routes to QSLs in kagome optical lattices using applied flux. An optical flux lattice can be applied to induce a uniform flux and chiral three-spin interactions that drive the formation of a gapped chiral spin liquid. A different approach based on recent experiments using laser-assisted tunneling and lattice tilt implements a staggered flux pattern which can drive a gapless spin liquid with symmetry protected nodal lines. Our proposals, therefore, establish kagome optical lattices with effective flux as a powerful platform for exploration of QSLs.
101 - M. Callegari , M. M. Parish , 2016
We investigate the behavior of identical dipolar fermions with aligned dipole moments in two-dimensional multilayers at zero temperature. We consider density instabilities that are driven by the attractive part of the dipolar interaction and, for the case of bilayers, we elucidate the properties of the stripe phase recently predicted to exist in this interaction regime. When the number of layers is increased, we find that this attractive stripe phase exists for an increasingly larger range of dipole angles, and if the interlayer distance is sufficiently small, the stripe phase eventually spans the full range of angles, including the situation where the dipole moments are aligned perpendicular to the planes. In the limit of an infinite number of layers, we derive an analytic expression for the interlayer effects in the density-density response function and, using this result, we find that the stripe phase is replaced by a collapse of the dipolar system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا