We show that in YIG-Pt bi-layers, which are widely used in experiments on the spin transfer torque and spin Hall effects, the spin-wave amplitude significantly decreases in comparison to a single YIG film due to the excitation of microwave eddy currents in a Pt coat. By introducing a novel excitation geometry, where the Pt layer faces the ground plane of a microstrip line structure, we suppressed the excitation of the eddy currents in the Pt layer and, thus, achieved a large increase in the transmission of the Damon-Eshbach surface spin wave. At the same time, no visible influence of an external dc current applied to the Pt layer on the spin-wave amplitude in the YIG-Pt bi-layer was observed in our experiments with YIG films of micrometer thickness.