We consider the deformation potential mechanism of the electron-phonon coupling in metal films and investigate the intensity of the associated heat transfer between the electron and phonon subsystems. The focus is on the temperature region below dimensional crossover $T<T^{ast}$ where the thermally relevant vibrations are described in terms of a quasi-two-dimensional elastic medium, while electron excitations behave as a three-dimensional Fermi gas. We derive an explicit expression for the power $Pleft( Tright) $ of the electron-phonon heat transfer which explains the behavior observed in some experiments including the case of metallic film supported by an insulating membrane with different acoustic properties. It is shown that at low temperatures the main contribution is due to the coupling with Lambs dilatational and flexural acoustic modes.