Do you want to publish a course? Click here

Perimeter as relaxed Minkowski content in metric measure spaces

109   0   0.0 ( 0 )
 Added by Nicola Gigli
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this note we prove that on general metric measure spaces the perimeter is equal to the relaxation of the Minkowski content w.r.t. convergence in measure



rate research

Read More

We study a measure-theoretic notion of connectedness for sets of finite perimeter in the setting of doubling metric measure spaces supporting a weak $(1,1)$-Poincar{e} inequality. The two main results we obtain are a decomposition theorem into indecomposable sets and a characterisation of extreme points in the space of BV functions. In both cases, the proof we propose requires an additional assumption on the space, which is called isotropicity and concerns the Hausdorff-type representation of the perimeter measure.
129 - Xian-Tao Huang 2021
We prove that on an essentially non-branching $mathrm{MCP}(K,N)$ space, if a geodesic ball has a volume lower bound and satisfies some additional geometric conditions, then in a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric constants.
101 - Ryan Gibara , Riikka Korte 2021
We prove in the setting of $Q$--Ahlfors regular PI--spaces the following result: if a domain has uniformly large boundary when measured with respect to the $s$--dimensional Hausdorff content, then its visible boundary has large $t$--dimensional Hausdorff content for every $0<t<sleq Q-1$. The visible boundary is the set of points that can be reached by a John curve from a fixed point $z_{0}in Omega$. This generalizes recent results by Koskela-Nandi-Nicolau (from $mathbb{R}^2$) and Azzam ($mathbb{R}^n$). In particular, our approach shows that the phenomenon is independent of the linear structure of the space.
We prove the differentiability of Lipschitz maps X-->V, where X is a complete metric measure space satisfying a doubling condition and a Poincare inequality, and V is a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new characterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direction of tangent vectors to suitable rectifiable curves.
Let (X j , d j , $mu$ j), j = 0, 1,. .. , m be metric measure spaces. Given 0 < p $kappa$ $le$ $infty$ for $kappa$ = 1,. .. , m and an analytic family of multilinear operators T z : L p 1 (X 1) x $bullet$ $bullet$ $bullet$ L p m (X m) $rightarrow$ L 1 loc (X 0), for z in the complex unit strip, we prove a theorem in the spirit of Steins complex interpolation for analytic families. Analyticity and our admissibility condition are defined in the weak (integral) sense and relax the pointwise definitions given in [9]. Continuous functions with compact support are natural dense subspaces of Lebesgue spaces over metric measure spaces and we assume the operators T z are initially defined on them. Our main lemma concerns the approximation of continuous functions with compact support by similar functions that depend analytically in an auxiliary parameter z. An application of the main theorem concerning bilinear estimates for Schr{o}dinger operators on L p is included.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا