Do you want to publish a course? Click here

Cavity design for high-frequency axion dark matter detectors

95   0   0.0 ( 0 )
 Added by Ian Stern
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 $mu$eV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.



rate research

Read More

Searches for dark matter axion involve the use of microwave resonant cavities operating in a strong magnetic field. Detector sensitivity is directly related to the cavity quality factor, which is limited, however, by the presence of the external magnetic field. In this paper we present a cavity of novel design whose quality factor is not affected by a magnetic field. It is based on a photonic structure by the use of sapphire rods. The quality factor at cryogenic temperature is in excess of $5 times 10^5$ for a selected mode.
We demonstrate a superconducting (SC) microwave (mw) cavity that can accelerate the dark matter search by maintaining superconductivity in a high DC magnetic field. We used high-temperature superconductor (HTSC) yttrium barium copper oxide (YBCO) with a phase transition temperature of 90K to prevent SC failure by the magnetic field. Since the direct deposition of HTSC film on the metallic mw cavity is very difficult, we used the commercial HTSC tapes which are flexible metallic tapes coated with HTSC thin films. We fabricated resonating cavity ($f_{TM010}$ ~ 6.89 GHz) with a third of the inner wall covered by YBCO tapes and measured the quality factor (Q factor) at 4K temperature, varying the DC magnetic field from 0 to 8 tesla. There was no significant quality (Q) factor drop and the superconductivity was well maintained even in 8 tesla magnetic field. This implies the possibility of good performance of HTSC mw resonant cavity under a strong magnetic field for axion detection.
The past few years have seen a renewed interest in the search for light particle dark matter. ABRACADABRA is a new experimental program to search for axion dark matter over a broad range of masses, $10^{-12}lesssim m_alesssim10^{-6}$ eV. ABRACADABRA-10 cm is a small-scale prototype for a future detector that could be sensitive to QCD axion couplings. In this paper, we present the details of the design, construction, and data analysis for the first axion dark matter search with the ABRACADABRA-10 cm detector. We include a detailed discussion of the statistical techniques used to extract the limit from the first result with an emphasis on creating a robust statistical footing for interpreting those limits.
Dedicated spectrometers for terahertz radiation with [0.3, 30] THz frequencies using traditional optomechanical interferometry are substantially less common than their infrared and microwave counterparts. This paper presents the design and initial performance measurements of a tabletop Fourier transform spectrometer (FTS) for multi-terahertz radiation using infrared optics in a Michelson arrangement. This is coupled to a broadband pyroelectric photodetector designed for [0.1, 30] THz frequencies. We measure spectra of narrowband and broadband input radiation to characterize the performance of this instrument above 10 THz, where signal-to-noise is high. This paves the groundwork for planned upgrades to extend below 10 THz. We also briefly discuss potential astroparticle physics applications of such FTS instruments to broadband axion dark matter searches, whose signature comprises low-rate monochromatic photons with unknown frequency.
Axion-like particles (ALPs) are pseudo-scalar particles that are candidates for ultralight dark matter. ALPs interact with photons slightly and cause the rotational oscillation of linear polarization. DANCE searches for ALP dark matter by enhancing the rotational oscillation in a bow-tie ring cavity. The signal to noise ratio of DANCE can be improved by long-term observation, and we are planning a year-long observation for the final DANCE. In this document, I will report on the control systems of the ring cavity we developed for the future long-term observation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا