Do you want to publish a course? Click here

Time-dependence of the holographic spectral function: Diverse routes to thermalisation

108   0   0.0 ( 0 )
 Added by Lata Joshi
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a new method for computing the holographic retarded propagator in generic (non-)equilibrium states using the state/geometry map. We check that our method reproduces the thermal spectral function given by the Son-Starinets prescription. The time-dependence of the spectral function of a relevant scalar operator is studied in a class of non-equilibrium states. The latter are represented by AdS-Vaidya geometries with an arbitrary parameter characterising the timescale for the dual state to transit from an initial thermal equilibrium to another due to a homogeneous quench. For long quench duration, the spectral function indeed follows the thermal form at the instantaneous effective temperature adiabatically, although with a slight initial time delay and a bit premature thermalisation. At shorter quench durations, several new non-adiabatic features appear: (i) time-dependence of the spectral function is seen much before than that in the effective temperature (advanced time-dependence), (ii) a big transfer of spectral weight to frequencies greater than the initial temperature occurs at an intermediate time (kink formation) and (iii) new peaks with decreasing amplitudes but in greater numbers appear even after the effective temperature has stabilised (persistent oscillations). We find four broad routes to thermalisation for lower values of spatial momenta. At higher values of spatial momenta, kink formations and persistent oscillations are suppressed, and thermalisation time decreases. The general thermalisation pattern is globally top-down, but a closer look reveals complexities.



rate research

Read More

We present the first exact calculations of the time dependence of causal correlations in driven nonequilibrium states in (2+1)-dimensional systems using holography. Comparing exact results with those obtained from simple prototype geometries that are parametrized only by a time dependent temperature, we find that the universal slowly varying features are controlled just by the pump duration and the initial and final temperatures only. We provide numerical evidence that the locations of the event and apparent horizons in the dual geometries can be deduced from the nonequilibrium causal correlations without any prior knowledge of the dual gravity theory.
We discuss, from a quantum information perspective, recent proposals of Maldacena, Ryu, Takayanagi, van Raamsdonk, Swingle, and Susskind that spacetime is an emergent property of the quantum entanglement of an associated boundary quantum system. We review the idea that the informational principle of minimal complexity determines a dual holographic bulk spacetime from a minimal quantum circuit U preparing a given boundary state from a trivial reference state. We describe how this idea may be extended to determine the relationship between the fluctuations of the bulk holographic geometry and the fluctuations of the boundary low-energy subspace. In this way we obtain, for every quantum system, an Einstein-like equation of motion for what might be interpreted as a bulk gravity theory dual to the boundary system.
We propose a simplified protocol of quantum energy teleportation (QET) for holographic conformal field theory (CFT) in 3-dimensional anti-de Sitter space with or without black hole. As a tentative proposal, we simplify the standard QET by replacing Alices local measurement with the local projection, which excites the system from ground state into a particular state dual to a Banados geometry. We then mimic Bobs local operation of the usual QET for extracting energy by deforming the UV surface with a local bump. Adopting the surface/state duality this deformation corresponds to local unitary. We evaluate the extraction of energy from the holographic stress tensor, and find that Bob always gains energy extraction in our protocol. This could be related to the positive energy theorem of the dual gravity. Moreover, the ratio of extraction energy to injection one is a universal function of the UV surface deformation profile.
We study the entanglement entropy in 1+1 dimensional conformal field theories in the presence of interfaces from a holographic perspective. Compared with the well-known case of boundary conformal field theories, interfaces allow for several interesting new observables. Depending on how the interface is located within the entangling region, the entanglement entropies differ and exhibit surprising new patterns and universal relations. While our analysis is performed within the framework of holography, we expect our results to hold more generally.
In the previous paper [arXiv:0911.0679], we showed that the Reissner-Nordstrom black hole in the 5-dimensional anti-de Sitter space coupled to the Maxwell theory with the Chern-Simons term is unstable when the Chern-Simons coupling is sufficiently large. In the dual conformal field theory, the instability suggests a spatially modulated phase transition. In this paper, we construct and analyze non-linear solutions which describe the end-point of this phase transition. In the limit where the Chern-Simons coupling is large, we find that the phase transition is of the second order with the mean field critical exponent. However, the dispersion relation with the Van Hove singularity enhances quantum corrections in the bulk, and we argue that this changes the order of the phase transition from the second to the first. We compute linear response functions in the non-linear solution and find an infinite off-diagonal DC conductivity in the new phase.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا