No Arabic abstract
We discuss the soundness of inflationary scenarios in theories beyond the Starobinsky model, namely a class of theories described by arbitrary functions of the Ricci scalar and the K-essence field. We discuss the pathologies associated with higher-order equations of motion which will be shown to constrain the stability of this class of theories. We provide a general framework to calculate the slow-roll parameters and the corresponding mappings to the theory parameters. For paradigmatic gravitational models within the class of theories under consideration we illustrate the power of the Planck/Bicep2 latest results to constrain such gravitational Lagrangians. Finally, bounds for potential deviations from Starobinsky-like inflation are derived.
Weyl (scale) invariant theories of scalars and gravity can generate all mass scales spontaneously. In this paper we study a particularly simple version -- scale invariant $R^2$ gravity -- and show that, during an inflationary period, it leads to fluctuations which, for a particular parameter choice, are almost indistinguishable from normal $R^2$ inflation. Current observations place tight constraints on the primary coupling constant of this theory and predict a tensor to scalar ratio, $0.0033 > r > 0.0026$, which is testable with the next generation of cosmic microwave background experiments.
In this paper, we employ mimetic $f(R,T)$ gravity coupled with Lagrange multiplier and mimetic potential to yield viable inflationary cosmological solutions consistent with latest Planck and BICEP2/Keck Array data. We present here three viable inflationary solutions of the Hubble parameter ($H$) represented by $H(N)=left(A exp beta N+B alpha ^Nright)^{gamma }$, $H(N)=left(A alpha ^N+B log Nright)^{gamma }$, and $H(N)=left(A e^{beta N}+B log Nright)^{gamma }$, where $A$, $beta$, $B$, $alpha$, $gamma$ are free parameters, and $N$ represents the number of e-foldings. We carry out the analysis with the simplest minimal $f(R,T)$ function of the form $f(R,T)= R + chi T$, where $chi$ is the model parameter. We report that for the chosen $f(R,T)$ gravity model, viable cosmologies are obtained compatible with observations by conveniently setting the Lagrange multiplier and the mimetic potential.
We study inflation in Weyl gravity. The original Weyl quadratic gravity, based on Weyl conformal geometry, is a theory invariant under Weyl symmetry of (gauged) local scale transformations. In this theory Planck scale ($M$) emerges as the scale where this symmetry is broken spontaneously by a geometric Stueckelberg mechanism, to Einstein-Proca action for the Weyl photon (of mass near $M$). With this action as a low energy broken phase of Weyl gravity, century-old criticisms of the latter (due to non-metricity) are avoided. In this context, inflation with field values above $M$ is natural, since this is just a phase transition scale from Weyl gravity (geometry) to Einstein gravity (Riemannian geometry), where the massive Weyl photon decouples. We show that inflation in Weyl gravity coupled to a scalar field has results close to those in Starobinsky model (recovered for vanishing non-minimal coupling), with a mildly smaller tensor-to-scalar ratio ($r$). Weyl gravity predicts a specific, narrow range $0.00257 leq rleq 0.00303$, for a spectral index $n_s$ within experimental bounds at $68%$CL and e-folds number $N=60$. This range of values will soon be reached by CMB experiments and provides a test of Weyl gravity. Unlike in the Starobinsky model, the prediction for $(r, n_s)$ is not affected by unknown higher dimensional curvature operators (suppressed by some large mass scale) since these are forbidden by the Weyl gauge symmetry.
Two new observational windows have been opened to strong gravitational physics: gravitational waves, and very long baseline interferometry. This suggests observational searches for new phenomena in this regime, and in particular for those necessary to make black hole evolution consistent with quantum mechanics. We describe possible features of compact quantum objects that replace classical black holes in a consistent quantum theory, and approaches to observational tests for these using gravitational waves. This is an example of a more general problem of finding consistent descriptions of deviations from general relativity, which can be tested via gravitational wave detection. Simple models for compact modifications to classical black holes are described via an effective stress tensor, possibly with an effective equation of state. A general discussion is given of possible observational signatures, and of their dependence on properties of the colliding objects. The possibility that departures from classical behavior are restricted to the near-horizon regime raises the question of whether these will be obscured in gravitational wave signals, due to their mutual interaction in a binary coalescence being deep in the mutual gravitational well. Numerical simulation with such simple models will be useful to clarify the sensitivity of gravitational wave observation to such highly compact departures from classical black holes.
We present two cases where the addition of the $R^2$ term to an inflationary model leads to single-field inflation instead of two-field inflation as is usually the case. In both cases we find that the effect of the $R^2$ term is to reduce the value of the tensor-to-scalar ratio $r$.