No Arabic abstract
We explore magnetic behavior of kagome francisites Cu3Bi(SeO3)2O2X (X = Cl and Br) using first-principles calculations. To this end, we propose an approach based on the Hubbard model in the Wannier functions basis constructed on the level of local-density approximation (LDA). The ground-state spin configuration is determined by a Hartree-Fock solution of the Hubbard model both in zero magnetic field and in applied magnetic fields. Additionally, parameters of an effective spin Hamiltonian are obtained by taking into account the hybridization effects and spin-orbit coupling. We show that only the former approach, the Hartree-Fock solution of the Hubbard model, allows for a complete description of the anisotropic magnetization process. While our calculations confirm that the canted zero-field ground state arises from a competition between ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor couplings in the kagome planes, weaker anisotropic terms are crucial for fixing spin directions and for the overall magnetization process. We thus show that the Hartree-Fock solution of an electronic Hamiltonian is a viable alternative to the analysis of effective spin Hamiltonians when a magnetic ground state and effects of external field are considered.
We performed Raman studies and a dielectric characterization of the pseudo-kagome Cu3Bi(SeO3)2O2X (X = Cl, Br). These compounds share competing nearest-neighbour ferromagnetic exchange and frustrating next-nearest-neighbour antiferromagnetic exchange as well as highly noncollinear magnetic ground state. However, at low temperature they differ with respect to the existence of inversion symmetry. For both compounds there exists a pronounced interplay of polar phonon modes with quantum magnetic fluctuations. A novel Raman mode appears for temperatures below the Neel temperature with a Fano lineshape and an enormous intensity that exceeds most of the phonon lines. We discuss a possible contribution of longitudinal magnons to this signal. In contrast, one magnon scattering based on linear transvers magnons is excluded based on a symmetry analysis of spin wave representations and Raman tensor calculations. There exists evidence that in these pseudo-kagome compounds magnetic quantum fluctuations carry an electric dipole moment. Our data as well as a comparison with previous far-infrared spectra allow us to conclude that Cu3Bi(SeO3)2O2Cl changes its symmetry most likely from Pmmn to P21mn with a second order structural phase transition at T*=120 K and becomes multiferroic. Cu3Bi(SeO3)2O2Br represents an interesting counter part as it does not show this instability and stays inversion symmetric down to lowest temperatures, investigated.
Anisotropic magnetic properties of a layered kagome-like system Cu3Bi(SeO3)2O2Br have been studied by bulk magnetization and magnetic susceptibility measurements as well as powder and single-crystal neutron diffraction. At T_N = 27.4 K the system develops an alternating antiferromagnetic order of (ab) layers, which individually exhibit canted ferrimagnetic moment arrangement, resulting from the competing ferro- and antiferro-magnetic intralayer exchange interactions. A magnetic field B_C ~ 0.8 T applied along the c axis (perpendicular to the layers) triggers a metamagnetic transition, when every second layer flips, i.e., resulting in a ferrimagnetic structure. Significantly higher fields are required to rotate the ferromagnetic component towards the b axis (~7 T) or towards the a axis (~15 T). The estimates of the exchange coupling constants and features indicative of an XY character of this quasi-2D system are presented.
To understand the magnetic property of layered van der Waals materials CrOX (X = Cl, Br), we performed the detailed first-principles calculations for both bulk and monolayer. We found that the charge-only density functional theory combined with the explicit on-site interaction terms (so-called cDFT$+U$) well reproduces the experimental magnetic ground state of bulk CrOX, which is not the case for the use of spin-dependent density functional (so-called sDFT$+U$). Unlike some of the previous studies, our results show that CrOX monolayers are antiferromagnetic as in the bulk. It is also consistent with our magnetic force linear response calculation of exchange couplings $J_{rm ex}$. The result of orbital-decomposed $J_{rm ex}$ calculations shows that the Cr $t_textrm{2g}$-$t_textrm{2g}$ component mainly contributes to the antiferromagnetic order in both bulk and monolayer. Our result and analysis show that taking the correct Hunds physics into account is of key importance to construct the magnetic phase diagram and to describe the electronic structure.
Density-functional calculations of lattice dynamics and high-resolution synchrotron powder diffraction uncover antiferroelectric distortion in the kagome francisite Cu$_3$Bi(SeO$_3$)$_2$O$_2$Cl below 115K. Its Br-containing analogue is stable in the room-temperature crystal structure down to at least 10K, although the Br compound is on the verge of a similar antiferroelectric instability and reveals local displacements of Cu and Br atoms. The I-containing compound is stable in its room-temperature structure according to density-functional calculations. We show that the distortion involves cooperative displacements of Cu and Cl atoms, and originates from the optimization of interatomic distances for weakly bonded halogen atoms. The distortion introduces a tangible deformation of the kagome spin lattice and may be responsible for the reduced net magnetization of the Cl compound compared to the Br one. The polar structure of Cu$_3$Bi(SeO$_3$)$_2$O$_2$Cl is only slightly higher in energy than the non-polar antiferroelectric structure, but no convincing evidence of its formation could be obtained.
Spin liquids are exotic phases of quantum matter challenging Landaus paradigm of symmetry-breaking phase transitions. Despite strong exchange interactions, spins do not order or freeze down to zero temperature. While well-established for 1D quantum antiferromagnets, in higher dimension where quantum fluctuations are less acute, realizing and understanding such states represent major issues, both theoretical and experimental. In this respect the simplest nearest-neighbor Heisenberg antiferromagnet Hamiltonian on the highly frustrated kagome lattice has proven to be a fascinating and inspiring model. The exact nature of its ground state remains elusive and the existence of a spin-gap is the first key-issue to be addressed to discriminate between the various classes of proposed spin liquids. Here, through low-temperature Nuclear Magnetic Resonance (NMR) contrast experiments on high quality single crystals, we single out the kagome susceptibility and the corresponding dynamics in the kagome archetype, the mineral herbertsmithite, ZnCu$_3$(OH)$_6$Cl$_2$. We firmly conclude that this material does not harbor any spin-gap, which restores a convergence with recent numerical results promoting a gapless Dirac spin liquid as the ground state of the Heisenberg kagome antiferromagnet.