No Arabic abstract
In this paper, we analyse a sub-class of two-dimensional homogeneous nearest neighbour (simple) random walk restricted on the lattice using the matrix geometric approach. In particular, we first present an alternative approach for the calculation of the stability condition, extending the result of Neuts drift conditions [30] and connecting it with the result of Fayolle et al. which is based on Lyapunov functions [13]. Furthermore, we consider the sub-class of random walks with equilibrium distributions given as series of product-forms and, for this class of random walks, we calculate the eigenvalues and the corresponding eigenvectors of the infinite matrix $mathbf{R}$ appearing in the matrix geometric approach. This result is obtained by connecting and extending three existing approaches available for such an analysis: the matrix geometric approach, the compensation approach and the boundary value problem method. In this paper, we also present the spectral properties of the infinite matrix $mathbf{R}$.
We consider dynamic random walks where the nearest neighbour jump rates are determined by an underlying supercritical contact process in equilibrium. This has previously been studied by den Hollander and dos Santos and den Hollander, dos Santos, Sidoravicius. We show the CLT for such a random walk, valid for all supercritical infection rates for the contact process environment.
It is well known that the behaviour of a branching process is completely described by the generating function of the offspring law and its fixed points. Branching random walks are a natural generalization of branching processes: a branching process can be seen as a one-dimensional branching random walk. We define a multidimensional generating function associated to a given branching random walk. The present paper investigates the similarities and the differences of the generating functions, their fixed points and the implications on the underlying stochastic process, between the one-dimensional (branching process) and the multidimensional case (branching random walk). In particular, we show that the generating function of a branching random walk can have uncountably many fixed points and a fixed point may not be an extinction probability, even in the irreducible case (extinction probabilities are always fixed points). Moreover, the generating function might not be a convex function. We also study how the behaviour of a branching random walk is affected by local modifications of the process. As a corollary, we describe a general procedure with which we can modify a continuous-time branching random walk which has a weak phase and turn it into a continuous-time branching random walk which has strong local survival for large or small values of the parameter and non-strong local survival for intermediate values of the parameter.
The reproduction speed of a continuous-time branching random walk is proportional to a positive parameter $lambda$. There is a threshold for $lambda$, which is called $lambda_w$, that separates almost sure global extinction from global survival. Analogously, there exists another threshold $lambda_s$ below which any site is visited almost surely a finite number of times (i.e.~local extinction) while above it there is a positive probability of visiting every site infinitely many times. The local critical parameter $lambda_s$ is completely understood and can be computed as a function of the reproduction rates. On the other hand, only for some classes of branching random walks it is known that the global critical parameter $lambda_w$ is the inverse of a certain function of the reproduction rates, which we denote by $K_w$. We provide here new sufficient conditions which guarantee that the global critical parameter equals $1/K_w$. This result extends previously known results for branching random walks on multigraphs and general branching random walks. We show that these sufficient conditions are satisfied by periodic tree-like branching random walks. We also discuss the critical parameter and the critical behaviour of continuous-time branching processes in varying environment. So far, only examples where $lambda_w=1/K_w$ were known; here we provide an example where $lambda_w>1/K_w$.
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d ge 3$ and the environment is not too random, then, the total population grows as fast as its expectation with strictly positive probability. If,on the other hand, $d le 2$, or the environment is ``random enough, then the total population grows strictly slower than its expectation almost surely. We show the equivalence between the slow population growth and a natural localization property in terms of replica overlap. We also prove a certain stronger localization property, whenever the total population grows strictly slower than its expectation almost surely.
Lecture Notes. Minicourse given at the workshop Activated Random Walks, DLA, and related topics at IMeRA-Marseille, March 2015.