Do you want to publish a course? Click here

Theoretical Insight into the Internal Quantum Efficiencies of Polymer/C$_{60}$ and Polymer/SWNT Photovoltaic Devices

156   0   0.0 ( 0 )
 Added by Duncan Mowbray
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The internal quantum efficiency (IQE) of an organic photovoltaic device (OPV) is proportional to the number of free charge carriers generated and their conductivity, per absorbed photon. However, both the IQE and the quantities that determine it, for example, electron-hole binding, charge separation, electron-hole recombination, and conductivity, can only be inferred indirectly from experiments. Using density functional theory, we calculate the excited-state formation energy, charge transfer, and zero-bias conductance in the singlet ground state and triplet excited state across polymer/fullerene and polymer/single walled carbon nanotube (SWNT) OPV donor/acceptor bulk heterojunctions. Specifically, we compare polythiophene (PT) and poly(3-methylthiophene-2,5-diyl) (P3MT) as donors and C$_{60}$ chains with (6,4), (6,5), and (10,5) SWNTs as acceptors. We find the conductivity increases substantially for both the excited triplet relative to the singlet ground state and for PT compared with P3MT due to the increased charge transfer and the resulting improvement in donor/acceptor level alignment. Similarly, the (6,4) SWNT, with a larger SWNT band gap and greater conductivity than fullerenes, provides the highest conductivities of 5 and 9% of the theoretical maximum for electron and hole carriers, respectively. This work has important implications for both the optimization of polymer/SWNT bulk heterojunctions and the design of new OPV bulk heterojunctions in silico.



rate research

Read More

The efficiency of solution-processed colloidal quantum dot (QD) based solar cells is limited by poor charge transport in the active layer of the device, which originates from multiple trapping sites provided by QD surface defects. We apply a recently developed ultrafast electro-optical technique, pump-push photocurrent spectroscopy, to elucidate the charge trapping dynamics in PbS colloidal-QD photovoltaic devices at working conditions. We show that IR photo-induced absorption of QD in the 0.2-0.5 eV region is partly associated with immobile charges, which can be optically de-trapped in our experiment. Using this absorption as a probe, we observe that the early trapping dynamics strongly depend on the nature of the ligands used for QD passivation while it depends only slightly on the nature of the electron-accepting layer. We find that weakly bound states, with a photon-activation energy of 0.2 eV, are populated instantaneously upon photoexcitation. This indicates that the photogenerated states show an intrinsically bound-state character, arguably similar to charge-transfer states formation in organic photovoltaic materials. Sequential population of deeper traps (activation energy 0.3-0.5 eV) is observed on the ~0.1-10 ns time scales, indicating that most of carrier trapping occurs only after substantial charge relaxation/transport. The reported study disentangles fundamentally different contributions to charge trapping dynamics in the nanocrystal-based optoelectronic devices and can serve as a useful tool for QD solar cell development.
We have performed magnetoresistance measurements on polyfluorene sandwich devices in weak magnetic fields as a function of applied voltage, device temperature (10K to 300K), film thickness and electrode materials. We observed either negative or positive magnetoresistance, dependent mostly on the applied voltage, with a typical magnitude of several percent. The shape of the magnetoresistance curve is characteristic of weak localization and antilocalization. Using weak localization theory, we find that the phase-breaking length is relatively large even at room temperature, and spin-orbit interaction is a function of the applied electric field.
123 - Kaifu Luo , Ralf Metzler 2010
Using Langevin dynamics simulations in three dimensions (3D), we investigate the dynamics of polymer translocation into the regions between two parallel plane walls with separation $R$ under a driving force $F$, respectively. Compared with an unconfined environment, the translocation dynamics is greatly changed due to the crowding effect of the partially translocated monomers. Translocation time $tau$ initially decreases rapidly with increasing $R$ and then saturates for larger $R$, and the confined environment leads to a nonuniversal dependence of $tau$ on $F$.
245 - Kehong Zhang , Kaifu Luo 2012
Using Langevin dynamics simulations, we investigate the dynamics of a flexible polymer translocation into a confined area under a driving force through a nanopore. We choose an ellipsoidal shape for the confinement and consider the dependence of the asymmetry of the ellipsoid measured by the aspect ratio on the translocation time. Compared with an isotropic confinement (sphere), an anisotropic confinement (ellipsoid) with the same volume slows down the translocation, and the translocation time increases with increasing the aspect ratio of the ellipsoid. We further find that it takes different time for polymer translocation into the same ellipsoid through major-axis and minor-axis directions, depending on the average density of the whole chain in the ellipsoid, $phi$. For $phi$ lower than a critical value $phi_c$, the translocation through minor axis is faster, and vice versa. These complicated behaviors are interpreted by the degree of the confinement and anisotropic confinement induced folding of the translocated chain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا