Tunable spin correlations are found to arise between two neighboring trapped exciton-polariton condensates which spin-polarize spontaneously. We observe a crossover from an antiferromagnetic- to a ferromagnetic pair state by reducing the coupling barrier in real-time using control of the imprinted pattern of pump light. Fast optical switching of both condensates is then achieved by resonantly but weakly triggering only a single condensate. These effects can be explained as the competition between spin bifurcations and spin-preserving Josephson coupling between the two condensates, and open the way to polariton Bose-Hubbard ladders.
We demonstrate, both experimentally and theoretically, a new phenomenon: the presence of dissipative coupling in the system of driven bosons. This is evidenced for a particular case of externally excited spots of exciton-polariton condensates in semiconductor microcavities. We observe that for two spatially separated condensates the dissipative coupling leads to the phase locking, either in-phase or out-of-phase, between the condensates. The effect depends on the distance between the condensates. For several excited spots, we observe the appearance of spontaneous vorticity in the system.
We investigate an optically trapped exciton-polariton condensate and observe temporal coherence beyond 1~ns duration. Due to the reduction of the spatial overlap with the thermal reservoir of excitons, the coherence time of the trapped condensate is more than an order of magnitude longer than that of an untrapped condensate. This ultralong coherence enables high precision spectroscopy of the trapped condensate, and we observe periodic beats of the field correlation function due to a fine energy splitting of two polarization modes of the condensate. Our results are important for realizing polariton simulators with spinor condensates in lattice potentials.
Recently a new type of system exhibiting spontaneous coherence has emerged -- the exciton-polariton condensate. Exciton-polaritons (or polaritons for short) are bosonic quasiparticles that exist inside semiconductor microcavities, consisting of a superposition of an exciton and a cavity photon. Above a threshold density the polaritons macroscopically occupy the same quantum state, forming a condensate. The lifetime of the polaritons are typically comparable to or shorter than thermalization times, making them possess an inherently non-equilibrium nature. Nevertheless, they display many of the features that would be expected of equilibrium Bose-Einstein condensates (BECs). The non-equilibrium nature of the system raises fundamental questions of what it means for a system to be a BEC, and introduces new physics beyond that seen in other macroscopically coherent systems. In this review we focus upon several physical phenomena exhibited by exciton-polariton condensates. In particular we examine topics such as the difference between a polariton BEC, a polariton laser, and a photon laser, as well as physical phenomena such as superfluidity, vortex formation, BKT (Berezinskii-Kosterlitz-Thouless) and BCS (Bardeen-Cooper-Schrieffer) physics. We also discuss the physics and applications of engineered polariton structures.
Exciton-polaritons are a coherent electron-hole-photon (e-h-p) system where condensation has been observed in semiconductor microcavities. In contrast to equilibrium Bose-Einstein condensation (BEC) for long lifetime systems, polariton condensates have a dynamical nonequilibrium feature owing to the similar physical structure that they have to semiconductor lasers. One of the distinguishing features of a condensate to a laser is the presence of strong coupling between the matter and photon fields. Irrespective of its equilibrium or nonequilibrium nature, exciton-polariton have been observed to maintain strong coupling. We show that by investigating high density regime of exciton-polariton condensates, the negative branch directly observed in photoluminescence. This is evidence that the present e-h-p system is still in the strong coupling regime, contrary to past results where the system reduced to standard lasing at high density.
We introduce the phenomenon of spiraling vortices in driven-dissipative (non-equilibrium) exciton-polariton condensates excited by a non-resonant pump beam. At suitable low pump intensities, these vortices are shown to spiral along circular trajectories whose diameter is inversely proportional to the effective mass of the polaritons, while the rotation period is mass independent. Both diameter and rotation period are inversely proportional to the pump intensity. Stable spiraling patterns in the form of complexes of multiple mutually-interacting vortices are also found. At elevated pump intensities, which create a stronger homogeneous background, we observe more complex vortex trajectories resembling Spirograph patterns.