The status of the macroscopic and microscopic description of the collective quadrupole modes is reviewed, where limits due to non-adiabaticity and decoherence are exposed. The microscopic description of the yrast states in vibrator-like nuclei in the framework of the rotating mean field is presented.
The behavior of the collective rotor in the chiral motion of triaxially deformed nuclei is investigated using the particle rotor model by transforming the wave functions from the $K$-representation to the $R$-representation. After examining the energy spectra of the doublet bands and their energy differences as functions of the triaxial deformation, the angular momentum components of the rotor, proton, neutron, and the total system are investigated. Moreover, the probability distributions of the rotor angular momentum ($R$-plots) and their projections onto the three principal axes ($K_R$-plots) are analyzed. The evolution of the chiral mode from a chiral vibration at the low spins to a chiral rotation at high spins is illustrated at triaxial deformations $gamma=20^circ$ and $30^circ$.
Novel transverse-momentum technique is used to analyse charged-particle exclusive data for collective motion in the Ar+KCl reaction at 1.8 GeV/nucl. Previous analysis of this reaction, employing the standard sphericity tensor, revealed no significant effect. In the present analysis, collective effects are observed, and they are substantially stronger than in the Cugnon cascade model, but weaker than in the hydrodynamical model.
A review of the main results on the collective type expansion of the compressed and hot fireball formed in heavy ion collisions and some remarks to be considered when comparing multiplicity wise phenomena taking place in A-A, p-A and pp collisions, are followed by a discussion of the experimental results which seem to evidence collective type phenomena in pp collisions at $sqrt{s}$ = 7 TeV at high charged particle multiplicity. Correlations among the kinetic freeze-out temperature, the average transverse expansion velocity and its profile, as a function of centrality and multiplicity, extracted from the fits of experimental transverse momentum spectra with an expression inspired by hydrodynamical models, estimates on Bjorken energy densities and perspectives in selecting soft and close to azimuthal isotropic events in pp collisions are presented.
Finite-dimensional Lie algebras of vector fields determine geometrical collective models in quantum and classical physics. Every set of vector fields on Euclidean space that generates the Lie algebra sl(3, R) and contains the angular momentum algebra so(3) is determined. The subset of divergence-free sl(3, R) vector fields is proven to be indexed by a real number $Lambda$. The $Lambda=0$ solution is the linear representation that corresponds to the Riemann ellipsoidal model. The nonlinear group action on Euclidean space transforms a certain family of deformed droplets among themselves. For positive $Lambda$, the droplets have a neck that becomes more pronounced as $Lambda$ increases; for negative $Lambda$, the droplets contain a spherical bubble of radius $|Lambda|^{{1/3}}$. The nonlinear vector field algebra is extended to the nonlinear general collective motion algebra gcm(3) which includes the inertia tensor. The quantum algebraic models of nonlinear nuclear collective motion are given by irreducible unitary representations of the nonlinear gcm(3) Lie algebra. These representations model fissioning isotopes ($Lambda>0$) and bubble and two-fluid nuclei ($Lambda<0$).
Contractions of orthogonal groups to Euclidean groups are applied to analytic descriptions of nuclear quantum phase transitions. The semiclassical asymptotic of multipole collective Hamiltonians are also investigated.