Do you want to publish a course? Click here

Inferential Privacy Guarantees for Differentially Private Mechanisms

88   0   0.0 ( 0 )
 Added by Robert Kleinberg
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

The correlations and network structure amongst individuals in datasets today---whether explicitly articulated, or deduced from biological or behavioral connections---pose new issues around privacy guarantees, because of inferences that can be made about one individual from anothers data. This motivates quantifying privacy in networked contexts in terms of inferential privacy---which measures the change in beliefs about an individuals data from the result of a computation---as originally proposed by Dalenius in the 1970s. Inferential privacy is implied by differential privacy when data are independent, but can be much worse when data are correlated; indeed, simple examples, as well as a general impossibility theorem of Dwork and Naor, preclude the possibility of achieving non-trivial inferential privacy when the adversary can have arbitrary auxiliary information. In this paper, we ask how differential privacy guarantees translate to guarantees on inferential privacy in networked contexts: specifically, under what limitations on the adversarys information about correlations, modeled as a prior distribution over datasets, can we deduce an inferential guarantee from a differential one? We prove two main results. The first result pertains to distributions that satisfy a natural positive-affiliation condition, and gives an upper bound on the inferential privacy guarantee for any differentially private mechanism. This upper bound is matched by a simple mechanism that adds Laplace noise to the sum of the data. The second result pertains to distributions that have weak correlations, defined in terms of a suitable influence matrix. The result provides an upper bound for inferential privacy in terms of the differential privacy parameter and the spectral norm of this matrix.



rate research

Read More

Differentially private algorithms protect individuals in data analysis scenarios by ensuring that there is only a weak correlation between the existence of the user in the data and the result of the analysis. Dynamic graph algorithms maintain the solution to a problem (e.g., a matching) on an evolving input, i.e., a graph where nodes or edges are inserted or deleted over time. They output the value of the solution after each update operation, i.e., continuously. We study (event-level and user-level) differentially private algorithms for graph problems under continual observation, i.e., differentially private dynamic graph algorithms. We present event-level private algorithms for partially dynamic counting-based problems such as triangle count that improve the additive error by a polynomial factor (in the length $T$ of the update sequence) on the state of the art, resulting in the first algorithms with additive error polylogarithmic in $T$. We also give $varepsilon$-differentially private and partially dynamic algorithms for minimum spanning tree, minimum cut, densest subgraph, and maximum matching. The additive error of our improved MST algorithm is $O(W log^{3/2}T / varepsilon)$, where $W$ is the maximum weight of any edge, which, as we show, is tight up to a $(sqrt{log T} / varepsilon)$-factor. For the other problems, we present a partially-dynamic algorithm with multiplicative error $(1+beta)$ for any constant $beta > 0$ and additive error $O(W log(nW) log(T) / (varepsilon beta) )$. Finally, we show that the additive error for a broad class of dynamic graph algorithms with user-level privacy must be linear in the value of the output solutions range.
Bayesian neural network (BNN) allows for uncertainty quantification in prediction, offering an advantage over regular neural networks that has not been explored in the differential privacy (DP) framework. We fill this important gap by leveraging recent development in Bayesian deep learning and privacy accounting to offer a more precise analysis of the trade-off between privacy and accuracy in BNN. We propose three DP-BNNs that characterize the weight uncertainty for the same network architecture in distinct ways, namely DP-SGLD (via the noisy gradient method), DP-BBP (via changing the parameters of interest) and DP-MC Dropout (via the model architecture). Interestingly, we show a new equivalence between DP-SGD and DP-SGLD, implying that some non-Bayesian DP training naturally allows for uncertainty quantification. However, the hyperparameters such as learning rate and batch size, can have different or even opposite effects in DP-SGD and DP-SGLD. Extensive experiments are conducted to compare DP-BNNs, in terms of privacy guarantee, prediction accuracy, uncertainty quantification, calibration, computation speed, and generalizability to network architecture. As a result, we observe a new tradeoff between the privacy and the reliability. When compared to non-DP and non-Bayesian approaches, DP-SGLD is remarkably accurate under strong privacy guarantee, demonstrating the great potential of DP-BNN in real-world tasks.
We introduce a new $(epsilon_p, delta_p)$-differentially private algorithm for the $k$-means clustering problem. Given a dataset in Euclidean space, the $k$-means clustering problem requires one to find $k$ points in that space such that the sum of squares of Euclidean distances between each data point and its closest respective point among the $k$ returned is minimised. Although there exist privacy-preserving methods with good theoretical guarantees to solve this problem [Balcan et al., 2017; Kaplan and Stemmer, 2018], in practice it is seen that it is the additive error which dictates the practical performance of these methods. By reducing the problem to a sequence of instances of maximum coverage on a grid, we are able to derive a new method that achieves lower additive error then previous works. For input datasets with cardinality $n$ and diameter $Delta$, our algorithm has an $O(Delta^2 (k log^2 n log(1/delta_p)/epsilon_p + ksqrt{d log(1/delta_p)}/epsilon_p))$ additive error whilst maintaining constant multiplicative error. We conclude with some experiments and find an improvement over previously implemented work for this problem.
Common datasets have the form of elements with keys (e.g., transactions and products) and the goal is to perform analytics on the aggregated form of key and frequency pairs. A weighted sample of keys by (a function of) frequency is a highly versatile summary that provides a sparse set of representative keys and supports approximate evaluations of query statistics. We propose private weighted sampling (PWS): A method that ensures element-level differential privacy while retaining, to the extent possible, the utility of a respective non-private weighted sample. PWS maximizes the reporting probabilities of keys and estimation quality of a broad family of statistics. PWS improves over the state of the art also for the well-studied special case of private histograms, when no sampling is performed. We empirically demonstrate significant performance gains compared with prior baselines: 20%-300% increase in key reporting for common Zipfian frequency distributions and accuracy for $times 2$-$ 8$ lower frequencies in estimation tasks. Moreover, PWS is applied as a simple post-processing of a non-private sample, without requiring the original data. This allows for seamless integration with existing implementations of non-private schemes and retaining the efficiency of schemes designed for resource-constrained settings such as massive distributed or streamed data. We believe that due to practicality and performance, PWS may become a method of choice in applications where privacy is desired.
Correlation clustering is a widely used technique in unsupervised machine learning. Motivated by applications where individual privacy is a concern, we initiate the study of differentially private correlation clustering. We propose an algorithm that achieves subquadratic additive error compared to the optimal cost. In contrast, straightforward adaptations of existing non-private algorithms all lead to a trivial quadratic error. Finally, we give a lower bound showing that any pure differentially private algorithm for correlation clustering requires additive error of $Omega(n)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا