Do you want to publish a course? Click here

Besov spaces on open sets

146   0   0.0 ( 0 )
 Added by Tsukasa Iwabuchi
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

This paper is devoted to giving definitions of Besov spaces on an arbitrary open set of $mathbb R^n$ via the spectral theorem for the Schrodinger operator with the Dirichlet boundary condition. The crucial point is to introduce some test function spaces on $Omega$. The fundamental properties of Besov spaces are also shown, such as embedding relations and duality, etc. Furthermore, the isomorphism relations are established among the Besov spaces in which regularity of functions is measured by the Dirichlet Laplacian and the Schrodinger operators.



rate research

Read More

We prove thatthe Banach space $(oplus_{n=1}^infty ell_p^n)_{ell_q}$, which is isomorphic to certain Besov spaces, has a greedy basis whenever $1leq p leqinfty$ and $1<q<infty$. Furthermore, the Banach spaces $(oplus_{n=1}^infty ell_p^n)_{ell_1}$, with $1<ple infty$, and $(oplus_{n=1}^infty ell_p^n)_{c_0}$, with $1le p<infty$ do not have a greedy bases. We prove as well that the space $(oplus_{n=1}^infty ell_p^n)_{ell_q}$ has a 1-greedy basis if and only if $1leq p=qle infty$.
We study the embeddings of (homogeneous and inhomogeneous) anisotropic Besov spaces associated to an expansive matrix $A$ into Sobolev spaces, with focus on the influence of $A$ on the embedding behaviour. For a large range of parameters, we derive sharp characterizations of embeddings.
112 - A. I. Tyulenev 2016
The paper puts forward new Besov spaces of variable smoothness $B^{varphi_{0}}_{p,q}(G,{t_{k}})$ and $widetilde{B}^{l}_{p,q,r}(Omega,{t_{k}})$ on rough domains. A~domain~$G$ is either a~bounded Lipschitz domain in~$mathbb{R}^{n}$ or the epigraph of a~Lipschitz function, a~domain~$Omega$ is an $(varepsilon,delta)$-domain. These spaces are shown to be the traces of the spaces $B^{varphi_{0}}_{p,q}(mathbb{R}^{n},{t_{k}})$ and $widetilde{B}^{l}_{p,q,r}(mathbb{R}^{n},{t_{k}})$ on domains $G$ and~$Omega$, respectively. The extension operator $operatorname{Ext}_{1}:B^{varphi_{0}}_{p,q}(G,{t_{k}}) to B^{varphi_{0}}_{p,q}(mathbb{R}^{n},{t_{k}})$ is linear, the operator $operatorname{Ext}_{2}:widetilde{B}^{l}_{p,q,r}(Omega,{t_{k}}) to widetilde{B}^{l}_{p,q,r}(mathbb{R}^{n},{t_{k}})$ is nonlinear. As a~corollary, an exact description of the traces of 2-microlocal Besov-type spaces and weighted Besov-type spaces on rough domains is obtained.
166 - A. I. Tyulenev 2015
The paper is concerned with Besov spaces of variable smoothness $B^{varphi_{0}}_{p,q}(mathbb{R}^{n},{t_{k}})$, in which the norms are defined in terms of convolutions with smooth functions. A relation is found between the spaces $B^{varphi_{0}}_{p,q}(mathbb{R}^{n},{t_{k}})$ and the spaces $widetilde{B}^{l}_{p,q,r}(mathbb{R}^{n},{t_{k}})$, which were introduced earlier by the author.
193 - Koichi Taniguchi 2017
The purpose of this paper is to give a definition and prove the fundamental properties of Besov spaces generated by the Neumann Laplacian. As a by-product of these results, the fractional Leibniz rule in these Besov spaces is obtained.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا