A fully efficient time-parallelized quantum optimal control algorithm


Abstract in English

We present a time-parallelization method that enables to accelerate the computation of quantum optimal control algorithms. We show that this approach is approximately fully efficient when based on a gradient method as optimization solver: the computational time is approximately divided by the number of available processors. The control of spin systems, molecular orientation and Bose-Einstein condensates are used as illustrative examples to highlight the wide range of application of this numerical scheme.

Download