Do you want to publish a course? Click here

Line broadening and the solar opacity problem

104   0   0.0 ( 0 )
 Added by Doron Gazit
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The calculation of line widths constitutes theoretical and computational challenges in the calculation of opacities of hot dense plasmas. Opacity models use line broadening approximations that are untested at stellar interior conditions. Moreover, calculations of atomic spectra of the sun, indicate a large discrepancy in the K-shell line widths between several atomic codes and the OP. In this work, the atomic code STAR is used to study the sensitivity of solar opacities to line-broadening. Variations in the solar opacity profile, due to an increase of the Stark widths resulting from discrepancies with OP, are compared, in light of the solar opacity problem, with the required opacity variations of the present day sun, as imposed by helioseismic and neutrino observations. The resulting variation profile, is much larger than the discrepancy between different atomic codes, agrees qualitatively with the missing opacity profile, recovers about half of the missing opacity nearby the convection boundary and has a little effect in the internal regions. Since it is hard to estimate quantitatively the uncertainty in the Stark widths, we show that an increase of all line widths by a factor of about 100 recovers quantitatively the missing opacity. These results emphasize the possibility that photoexcitation processes are not modeled properly, and more specifically, highlight the need for a better theoretical characterization of the line broadening phenomena at stellar interior conditions and of the uncertainty due to the way it is implemented by atomic codes.



rate research

Read More

The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic of the degree of ionization and compression resulting from flare heating in the chromosphere. To resolve this issue, we have incorporated the unified theory of electric pressure broadening of the hydrogen lines into the non-LTE radiative transfer code RH. This broadening prescription produces a much more realistic spectrum of the quiescent, A0 star Vega compared to the analytic approximations used as a damping parameter in the Voigt profiles. We test recent radiative-hydrodynamic (RHD) simulations of the atmospheric response to high nonthermal electron beam fluxes with the new broadening prescription and find that the Balmer lines are over-broadened at the densest times in the simulations. Adding many simultaneously heated and cooling model loops as a multithread model improves the agreement with the observations. We revisit the three-component phenomenological flare model of the YZ CMi Megaflare using recent and new RHD models. The evolution of the broadening, line flux ratios, and continuum flux ratios are well-reproduced by a multithread model with high-flux nonthermal electron beam heating, an extended decay phase model, and a hot spot atmosphere heated by an ultrarelativistic electron beam with reasonable filling factors: 0.1%, 1%, and 0.1% of the visible stellar hemisphere, respectively. The new modeling motivates future work to understand the origin of the extended gradual phase emission.
In the quiet regions on the solar surface, turbulent convective motions of granulation play an important role in creating small-scale magnetic structures, as well as in energy injection into the upper atmosphere. The turbulent nature of granulation can be studied using spectral line profiles, especially line broadening, which contains information on the flow field smaller than the spatial resolution of an instrument. Moreover, the Doppler velocity gradient along a line-of-sight (LOS) causes line broadening as well. However, the quantitative relationship between velocity gradient and line broadening has not been understood well. In this study, we perform bisector analyses using the spectral profiles obtained using the Spectro-Polarimeter of the Hinode/Solar Optical Telescope to investigate the relationship of line broadening and bisector velocities with the granulation flows. The results indicate that line broadening has a positive correlation with the Doppler velocity gradients along the LOS. We found excessive line broadening in fading granules, that cannot be explained only by the LOS velocity gradient, although the velocity gradient is enhanced in the process of fading. If this excessive line broadening is attributed to small-scale turbulent motions, the averaged turbulent velocity is obtained as 0.9 km/s.
In incorporating the effect of atmospheric turbulence in the broadening of spectral lines, the so-called radial-tangential macroturbulence (RTM) model has been widely used in the field of solar-type stars, which was devised from an intuitive appearance of granular velocity field of the Sun. Since this model assumes that turbulent motions are restricted to only radial and tangential directions, it has a special broadening function with notably narrow width due to the projection effect, the validity of which has not yet been confirmed in practice. With an aim to check whether this RTM model adequately represents the actual solar photospheric velocity field, we carried out an extensive study on the non-thermal velocity dispersion along the line-of-sight (V_los) by analyzing spectral lines at various points of the solar disk based on locally-averaged as well as high spatial-resolution spectra, and found the following results. First, the center-to-limb run of V_los derived from ground-based low-resolution spectra is simply monotonic with a slightly increasing tendency, which contradicts the specific trend (an appreciable peak at theta~45 deg) predicted from RTM. Second, the V_los values derived from a large number of spectra based on high-resolution space observation revealed to follow a nearly normal distribution, without any sign of peculiar distribution expected for the RTM case. These two observational facts indicate that the actual solar velocity field is not such simply dichotomous as assumed in RTM, but directionally more chaotic. We thus conclude that RTM is not an adequate model at least for solar-type stars, which would significantly overestimate the turbulent velocity dispersion by a factor of ~2. The classical Gaussian macroturbulence model should be more reasonable in this respect.
204 - M. Krief , A. Feigel , D. Gazit 2016
A new opacity model based on the Super-Transition-Array (STA) method for the calculation of monochromatic opacities of local thermodynamic equilibrium plasmas, was developed. The atomic code, named STAR (STA-Revised), is described and used to calculate spectral opacities for a solar model implementing the recent AGSS09 composition. Calculations are carried throughout the solar radiative zone. The relative contributions of different chemical elements and atomic processes to the total Rosseland mean opacity are analyzed in detail. Monochromatic opacities and charge state distributions were compared with the widely used Opacity-Project (OP) code, for several elements near the radiation-convection interface. STAR Rosseland opacities for the solar mixture show a very good agreement with OP and the OPAL opacity code, throughout the radiation zone. Finally, an explicit STA calculation of the full AGSS09 photospheric mixture, including all heavy metals was performed. It was shown that due to their extremely low abundance, and despite being very good photon absorbers, the heavy elements do not affect the Rosseland opacity.
141 - Aldo Serenelli 2009
We construct updated solar models with different sets of solar abundances, including the most recent determinations by Asplund et al. (2009). The latter work predicts a larger ($sim 10%$) solar metallicity compared to previous measurements by the same authors but significantly lower ($sim 25%$) than the recommended value from a decade ago by Grevesse & Sauval (1998). We compare the results of our models with determinations of the solar structure inferred through helioseismology measurements. The model that uses the most recent solar abundance determinations predicts the base of the solar convective envelope to be located at $R_{rm CZ}= 0.724{rm R_odot}$ and a surface helium mass fraction of $Y_{rm surf}=0.231$. These results are in conflict with helioseismology data ($R_{rm CZ}= 0.713pm0.001{rm R_odot}$ and $Y_{rm surf}=0.2485pm0.0035$) at 5$-sigma$ and 11$-sigma$ levels respectively. Using the new solar abundances, we calculate the magnitude by which radiative opacities should be modified in order to restore agreement with helioseismology. We find that a maximum change of $sim 15%$ at the base of the convective zone is required with a smooth decrease towards the core, where the change needed is $sim 5%$. The required change at the base of the convective envelope is about half the value estimated previously. We also present the solar neutrino fluxes predicted by the new models. The most important changes brought about by the new solar abundances are the increase by $sim 10%$ in the predicted $^{13}$N and $^{15}$O fluxes that arise mostly due to the increase in the C and N abundances in the newly determined solar composition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا