A Game-Theoretic Approach for Detection of Overlapping Communities in Dynamic Complex Networks


Abstract in English

Complex networks tend to display communities which are groups of nodes cohesively connected among themselves in one group and sparsely connected to the remainder of the network. Detecting such communities is an important computational problem, since it provides an insight into the functionality of networks. Further, investigating community structure in a dynamic network, where the network is subject to change, is even more challenging. This paper presents a game-theoretical technique for detecting community structures in dynamic as well as static complex networks. In our method, each node takes the role of a player that attempts to gain a higher payoff by joining one or more communities or switching between them. The goal of the game is to reveal community structure formed by these players by finding a Nash-equilibrium point among them. To the best of our knowledge, this is the first game-theoretic algorithm which is able to extract overlapping communities from either static or dynamic networks. We present the experimental results illustrating the effectiveness of the proposed method on both synthetic and real-world networks.

Download