Multiclass Classification, Information, Divergence, and Surrogate Risk


Abstract in English

We provide a unifying view of statistical information measures, multi-way Bayesian hypothesis testing, loss functions for multi-class classification problems, and multi-distribution $f$-divergences, elaborating equivalence results between all of these objects, and extending existing results for binary outcome spaces to more general ones. We consider a generalization of $f$-divergences to multiple distributions, and we provide a constructive equivalence between divergences, statistical information (in the sense of DeGroot), and losses for multiclass classification. A major application of our results is in multi-class classification problems in which we must both infer a discriminant function $gamma$---for making predictions on a label $Y$ from datum $X$---and a data representation (or, in the setting of a hypothesis testing problem, an experimental design), represented as a quantizer $mathsf{q}$ from a family of possible quantizers $mathsf{Q}$. In this setting, we characterize the equivalence between loss functions, meaning that optimizing either of two losses yields an optimal discriminant and quantizer $mathsf{q}$, complementing and extending earlier results of Nguyen et. al. to the multiclass case. Our results provide a more substantial basis than standard classification calibration results for comparing different losses: we describe the convex losses that are consistent for jointly choosing a data representation and minimizing the (weighted) probability of error in multiclass classification problems.

Download