Do you want to publish a course? Click here

Multiclass Classification, Information, Divergence, and Surrogate Risk

70   0   0.0 ( 0 )
 Added by Khashayar Khosravi
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We provide a unifying view of statistical information measures, multi-way Bayesian hypothesis testing, loss functions for multi-class classification problems, and multi-distribution $f$-divergences, elaborating equivalence results between all of these objects, and extending existing results for binary outcome spaces to more general ones. We consider a generalization of $f$-divergences to multiple distributions, and we provide a constructive equivalence between divergences, statistical information (in the sense of DeGroot), and losses for multiclass classification. A major application of our results is in multi-class classification problems in which we must both infer a discriminant function $gamma$---for making predictions on a label $Y$ from datum $X$---and a data representation (or, in the setting of a hypothesis testing problem, an experimental design), represented as a quantizer $mathsf{q}$ from a family of possible quantizers $mathsf{Q}$. In this setting, we characterize the equivalence between loss functions, meaning that optimizing either of two losses yields an optimal discriminant and quantizer $mathsf{q}$, complementing and extending earlier results of Nguyen et. al. to the multiclass case. Our results provide a more substantial basis than standard classification calibration results for comparing different losses: we describe the convex losses that are consistent for jointly choosing a data representation and minimizing the (weighted) probability of error in multiclass classification problems.



rate research

Read More

We consider the problem of learning a coefficient vector x_0in R^N from noisy linear observation y=Ax_0+w in R^n. In many contexts (ranging from model selection to image processing) it is desirable to construct a sparse estimator x. In this case, a popular approach consists in solving an L1-penalized least squares problem known as the LASSO or Basis Pursuit DeNoising (BPDN). For sequences of matrices A of increasing dimensions, with independent gaussian entries, we prove that the normalized risk of the LASSO converges to a limit, and we obtain an explicit expression for this limit. Our result is the first rigorous derivation of an explicit formula for the asymptotic mean square error of the LASSO for random instances. The proof technique is based on the analysis of AMP, a recently developed efficient algorithm, that is inspired from graphical models ideas. Simulations on real data matrices suggest that our results can be relevant in a broad array of practical applications.
99 - Tomohiro Nishiyama 2019
In this paper, we derive a useful lower bound for the Kullback-Leibler divergence (KL-divergence) based on the Hammersley-Chapman-Robbins bound (HCRB). The HCRB states that the variance of an estimator is bounded from below by the Chi-square divergence and the expectation value of the estimator. By using the relation between the KL-divergence and the Chi-square divergence, we show that the lower bound for the KL-divergence which only depends on the expectation value and the variance of a function we choose. This lower bound can also be derived from an information geometric approach. Furthermore, we show that the equality holds for the Bernoulli distributions and show that the inequality converges to the Cram{e}r-Rao bound when two distributions are very close. We also describe application examples and examples of numerical calculation.
Despite the success of large-scale empirical risk minimization (ERM) at achieving high accuracy across a variety of machine learning tasks, fair ERM is hindered by the incompatibility of fairness constraints with stochastic optimization. In this paper, we propose the fair empirical risk minimization via exponential Renyi mutual information (FERMI) framework. FERMI is built on a stochastic estimator for exponential Renyi mutual information (ERMI), an information divergence measuring the degree of the dependence of predictions on sensitive attributes. Theoretically, we show that ERMI upper bounds existing popular fairness violation metrics, thus controlling ERMI provides guarantees on other commonly used violations, such as $L_infty$. We derive an unbiased estimator for ERMI, which we use to derive the FERMI algorithm. We prove that FERMI converges for demographic parity, equalized odds, and equal opportunity notions of fairness in stochastic optimization. Empirically, we show that FERMI is amenable to large-scale problems with multiple (non-binary) sensitive attributes and non-binary targets. Extensive experiments show that FERMI achieves the most favorable tradeoffs between fairness violation and test accuracy across all tested setups compared with state-of-the-art baselines for demographic parity, equalized odds, equal opportunity. These benefits are especially significant for non-binary classification with large sensitive sets and small batch sizes, showcasing the effectiveness of the FERMI objective and the developed stochastic algorithm for solving it.
212 - Jue Hou , Zijian Guo , Tianxi Cai 2021
Risk modeling with EHR data is challenging due to a lack of direct observations on the disease outcome, and the high dimensionality of the candidate predictors. In this paper, we develop a surrogate assisted semi-supervised-learning (SAS) approach to risk modeling with high dimensional predictors, leveraging a large unlabeled data on candidate predictors and surrogates of outcome, as well as a small labeled data with annotated outcomes. The SAS procedure borrows information from surrogates along with candidate predictors to impute the unobserved outcomes via a sparse working imputation model with moment conditions to achieve robustness against mis-specification in the imputation model and a one-step bias correction to enable interval estimation for the predicted risk. We demonstrate that the SAS procedure provides valid inference for the predicted risk derived from a high dimensional working model, even when the underlying risk prediction model is dense and the risk model is mis-specified. We present an extensive simulation study to demonstrate the superiority of our SSL approach compared to existing supervised methods. We apply the method to derive genetic risk prediction of type-2 diabetes mellitus using a EHR biobank cohort.
Information divergences are commonly used to measure the dissimilarity of two elements on a statistical manifold. Differentiable manifolds endowed with different divergences may possess different geometric properties, which can result in totally different performances in many practical applications. In this paper, we propose a total Bregman divergence-based matrix information geometry (TBD-MIG) detector and apply it to detect targets emerged into nonhomogeneous clutter. In particular, each sample data is assumed to be modeled as a Hermitian positive-definite (HPD) matrix and the clutter covariance matrix is estimated by the TBD mean of a set of secondary HPD matrices. We then reformulate the problem of signal detection as discriminating two points on the HPD matrix manifold. Three TBD-MIG detectors, referred to as the total square loss, the total log-determinant and the total von Neumann MIG detectors, are proposed, and they can achieve great performances due to their power of discrimination and robustness to interferences. Simulations show the advantage of the proposed TBD-MIG detectors in comparison with the geometric detector using an affine invariant Riemannian metric as well as the adaptive matched filter in nonhomogeneous clutter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا