The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from Geant4 version 9.6. The parameters extracted from data and simulated samples are compared for the two types of hadrons. The response to pions and the ratio of the non-electromagnetic to the electromagnetic calorimeter response, h/e, are estimated using the extrapolation and decomposition of the longitudinal profiles.
Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using Geant4 version 9.6 are compared.
An analog hadron calorimeter (AHCAL) prototype of 5.3 nuclear interaction lengths thickness has been constructed by members of the CALICE Collaboration. The AHCAL prototype consists of a 38-layer sandwich structure of steel plates and highly-segmented scintillator tiles that are read out by wavelength-shifting fibers coupled to SiPMs. The signal is amplified and shaped with a custom-designed ASIC. A calibration/monitoring system based on LED light was developed to monitor the SiPM gain and to measure the full SiPM response curve in order to correct for non-linearity. Ultimately, the physics goals are the study of hadron shower shapes and testing the concept of particle flow. The technical goal consists of measuring the performance and reliability of 7608 SiPMs. The AHCAL was commissioned in test beams at DESY and CERN. The entire prototype was completed in 2007 and recorded hadron showers, electron showers and muons at different energies and incident angles in test beams at CERN and Fermilab.
We present a study of the response of the highly granular Digital Hadronic Calorimeter with steel absorbers, the Fe-DHCAL, to positrons, muons, and pions with momenta ranging from 2 to 60 GeV/c. Developed in the context of the CALICE collaboration, this hadron calorimeter utilises Resistive Plate Chambers as active media, interspersed with steel absorber plates. With a transverse granularity of $1,times,1,$cm$^{2}$ and a longitudinal segmentation of 38 layers, the calorimeter counted 350,208 readout channels, each read out with single-bit resolution (digital readout). The data were recorded in the Fermilab test beam in 2010-11. The analysis includes measurements of the calorimeter response and the energy resolution to positrons and muons, as well as detailed studies of various shower shape quantities. The results are compared to simulations based on Geant4, which utilise different electromagnetic and hadronic physics lists.
We investigate the three dimensional substructure of hadronic showers in the CALICE scintillator-steel hadronic calorimeter. The high granularity of the detector is used to find track segments of minimum ionising particles within hadronic showers, providing sensitivity to the spatial structure and the details of secondary particle production in hadronic cascades. The multiplicity, length and angular distribution of identified track segments are compared to GEANT4 simulations with several different shower models. Track segments also provide the possibility for in-situ calibration of highly granular calorimeters.
A basic prototype for an analog hadron calorimeter for a future linear collider detector is currently being realized by the CALICE collaboration. The aim is to show the feasibility to build a realistic detector with fully integrated readout electronics. An important aspect of the design is the improvement of the jet energy resolution by measuring details of the shower development with a highly granular device and combining them with the information from the tracking detectors. Therefore, the signals are sampled by small scintillating tiles that are read out by silicon photomultipliers. The ASICs are integrated into the calorimeter layers and are developed for minimal power dissipation. An embedded LED system per channel is used for calibration. The prototype has been tested extensively and the concept as well as results from the DESY test setups are reported here.
The CALICE Collaboration: G. Eigen
,T. Price
,N. K. Watson
.
(2016)
.
"Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter"
.
Marina Chadeeva
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا