Using the 2-MASS Photometric Redshift Survey to optimize LIGO Follow-Up Observations


Abstract in English

The initial discovery of LIGO on 14 September 2015 was the inspiral merger and ring-down of the black hole binary at a distance of about 500~Mpc or a redshift of about 0.1. The search for electromagnetic counterparts for the inspiral of binary black holes is impeded by coarse initial source localisations and a lack of a compelling model for the counterpart; therefore, rapid electromagnetic follow-up is required to understand the astrophysical context of these sources. Because astrophysical sources of gravitational radiation are likely to reside in galaxies, it would make sense to search first in regions where the LIGO-Virgo probability is large and where the density of galaxies is large as well. Under the assumption that the probability of a gravitational-wave event from a given region of space is proportional to the density of galaxies within the probed volume, one can calculate an improved localisation of the position of the source simply by multiplying the LIGO-Virgo skymap by the density of galaxies in the range of redshifts. We propose using the 2-MASS Photometric Redshift Galaxy Catalogue for this purpose and demonstrate that using it can dramatically reduce the search region for electromagnetic counterparts.

Download