Do you want to publish a course? Click here

Origin and stability of dark pulse Kerr combs in normal dispersion resonators

97   0   0.0 ( 0 )
 Added by Lendert Gelens
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze dark pulse Kerr frequency combs in optical resonators with normal group-velocity dispersion using the Lugiato-Lefever model. We show that in the time domain these correspond to interlocked switching waves between the upper and lower homogeneous states, and explain how this fact accounts for many of their experimentally observed properties. Modulational instability does not play any role in their existence. Furthermore, we provide a detailed map indicating where stable dark pulse Kerr combs can be found in parameter space, and how they are destabilized for increasing values of frequency detuning.



rate research

Read More

We investigate the formation of dark vector localized structures in the presence of nonlinear polarization mode coupling in optical resonators subject to a coherent optical injection in the normal dispersion regime. This simple device is described by coupled Lugiato-Lefever equations. The stabilization of localized structures is attributed to a front locking mechanism. We show that in a multistable homogeneous steady-state regime, two branches of dark localized structures can coexist for a fixed value of the system parameters. These coexisting solutions possess different polarization states and different power peaks in the microresonator. We characterize in-depth their formation by drawing their bifurcation diagrams in regimes close to modulational instability and far from it. It is shown that both branches of localized structures exhibit a heteroclinic collapse snaking type of behavior. The coexistence of two vectorial branches of dark localized states is not possible without taking into account polarization degrees of freedom.
We report the existence of vectorial dark dissipative solitons in optical cavities subject to a coherently injected beam. We assume that the resonator is operating in a normal dispersion regime far from any modulational instability. We show that the vectorial front locking mechanism allows for the stabilisation of dark dissipative structures. These structures differ by their temporal duration and their state of polarization. We characterize them by constructing their heteroclinic snaking bifurcation diagram showing evidence of multistability within a finite range of the control parameter.
We present a stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs in whispering gallery mode resonators pumped in the anomalous dispersion regime. This article is the second part of a research work whose first part was devoted to the regime of normal dispersion, and was presented in ref. cite{Part_I}. The case of anomalous dispersion is indeed the most interesting from the theoretical point of view, because of the considerable variety of dynamical behaviors that can be observed. From a technological point of view, it is also the most relevant because it corresponds to the regime where Kerr combs are predominantly generated, studied, and used for different applications. In this article, we analyze the connection between the spatial patterns and the bifurcation structure of the eigenvalues associated to the various equilibria of the system. The bifurcation map evidences a considerable richness from a dynamical standpoint. We study in detail the emergence of super- and sub-critical Turing patterns in the system. We determine the areas were bright isolated cavity solitons emerge, and we show that soliton molecules can emerge as well. Very complex temporal patterns can actually be observed in the system, where solitons (or soliton complexes) co-exist with or without mutual interactions. Our investigations also unveil the mechanism leading to the phenomenon of breathing solitons. Two routes to chaos in the system are identified, namely a route via the so called secondary combs, and another via soliton breathers. The Kerr combs corresponding to all these temporal patterns are analyzed in detail, and a discussion is led about the possibility to gain synthetic comprehension of the observed spectra out of the dynamical complexity of the system.
The regions of existence and stability of dark solitons in the Lugiato-Lefever model with normal chromatic dispersion are described. These localized states are shown to be organized in a bifurcation structure known as collapsed snaking implying the presence of a region in parameter space with a finite multiplicity of dark solitons. For some parameter values dynamical instabilities are responsible for the appearance of oscillations and temporal chaos. The importance of the results for understanding frequency comb generation in microresonators is emphasized.
Kerr microresonators driven in the normal dispersion regime typically require the presence of localized dispersion perturbations, such as those induced by avoided mode crossings, to initiate the formation of optical frequency combs. In this work, we experimentally demonstrate that this requirement can be lifted by driving the resonator with a pulsed pump source. We also show that controlling the desynchronization between the pump repetition rate and the cavity free-spectral range (FSR) provides a simple mechanism to tune the center frequency of the output comb. Using a fiber mini-resonator with a radius of only 6 cm we experimentally present spectrally flat combs with a bandwidth of 3 THz whose center frequency can be tuned by more than 2 THz. By driving the cavity at harmonics of its 0.54 GHz FSR, we are able to generate combs with line spacings selectable between 0.54 and 10.8 GHz. The ability to tune both the center frequency and frequency spacing of the output comb highlights the flexibility of this platform. Additionally, we demonstrate that under conditions of large pump-cavity desynchronization, the same cavity also supports a new form of Raman-assisted anomalous dispersion cavity soliton.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا