Insulating nature of strongly correlated massless Dirac fermions in an organic crystal


Abstract in English

Through resistivity measurements of an organic crystal hosting massless Dirac fermions with a charge-ordering instability, we reveal the effect of interactions among Dirac fermions on the charge transport. A low-temperature resistivity upturn appears robustly irrespectively of pressure and is enhanced while approaching the critical pressure of charge ordering, indicating that the insulating behavior originates from short-range Coulomb interactions. Observation of apparently vanishing gap in the charge-ordered phase accords with the theoretical prediction of the non-topological edge states.

Download