Many-body interferometry of a Rydberg-dressed spin lattice


Abstract in English

Ultracold atoms are an ideal platform to study strongly correlated phases of matter in and out of equilibrium. Much of the experimental progress in this field crucially relies on the control of the contact interaction between two atoms. Control of strong long-range interactions between distant ground state atoms has remained a long standing goal, opening the path towards the study of fundamentally new quantum many-body systems including frustrated or topological magnets and supersolids. Optical dressing of ground state atoms by near-resonant laser coupling to Rydberg states has been proposed as a versatile method to engineer such interactions. However, up to now the great potential of this approach for interaction control in a many-body setting has eluded experimental confirmation. Here we report the realisation of coherent Rydberg-dressing in an ultracold atomic lattice gas and directly probe the induced interaction potential using an interferometric technique with single atom sensitivity. We use this approach to implement a two-dimensional synthetic spin lattice and demonstrate its versatility by tuning the range and anisotropy of the effective spin interactions. Our measurements are in remarkable agreement with exact solutions of the many-body dynamics, providing further evidence for the high degree of accurate interaction control in these systems. Finally, we identify a collective many-body decay process, and discuss possible routes to overcome this current limitation of coherence times. Our work marks the first step towards the use of laser-controlled Rydberg interactions for the study of exotic quantum magnets in optical lattices.

Download