Do you want to publish a course? Click here

Rigidity and a Riemann-Hilbert correspondence for p-adic local systems

93   0   0.0 ( 0 )
 Added by Xinwen Zhu
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We construct a functor from the category of p-adic etale local systems on a smooth rigid analytic variety X over a p-adic field to the category of vector bundles with an integrable connection over its base change to B_dR, which can be regarded as a first step towards the sought-after p-adic Riemann-Hilbert correspondence. As a consequence, we obtain the following rigidity theorem for p-adic local systems on a connected rigid analytic variety: if the stalk of such a local system at one point, regarded as a p-adic Galois representation, is de Rham in the sense of Fontaine, then the stalk at every point is de Rham. Along the way, we also establish some basic properties of the p-adic Simpson correspondence. Finally, we give an application of our results to Shimura varieties.



rate research

Read More

We use Scholzes framework of diamonds to gain new insights in correspondences between $p$-adic vector bundles and local systems. Such correspondences arise in the context of $p$-adic Simpson theory in the case of vanishing Higgs fields. In the present paper we provide a detailed analysis of local systems on diamonds for the etale, pro-etale, and the $v$-topology, and study the structure sheaves for all three topologies in question. Applied to proper adic spaces of finite type over $mathbb{C}_p$ this enables us to prove a category equivalence between $mathbb{C}_p$-local systems with integral models, and modules under the $v$-structure sheaf which modulo each $p^n$ can be trivialized on a proper cover. The flexibility of the $v$-topology together with a descent result on integral models of local systems allows us to prove that the trivializability condition in the module category may be checked on any normal proper cover. This result leads to an extension of the parallel transport theory by Deninger and the second author to vector bundles with numerically flat reduction on a proper normal cover.
On any smooth algebraic variety over a $p$-adic local field, we construct a tensor functor from the category of de Rham $p$-adic etale local systems to the category of filtered algebraic vector bundles with integrable connections satisfying the Griffiths transversality, which we view as a $p$-adic analogue of Delignes classical Riemann--Hilbert correspondence. A crucial step is to construct canonical extensions of the desired connections to suitable compactifications of the algebraic variety with logarithmic poles along the boundary, in a precise sense characterized by the eigenvalues of residues; hence the title of the paper. As an application, we show that this $p$-adic Riemann--Hilbert functor is compatible with the classical one over all Shimura varieties, for local systems attached to representations of the associated reductive algebraic groups.
This is the first in a series of papers about foliations in derived geometry. After introducing derived foliations on arbitrary derived stacks, we concentrate on quasi-smooth and rigid derived foliations on smooth complex algebraic varieties and on their associated formal and analyt
For an abeloid variety $A$ over a complete algebraically closed field extension $K$ of $mathbb Q_p$, we construct a $p$-adic Corlette-Simpson correspondence, namely an equivalence between finite-dimensional continuous $K$-linear representations of the Tate module and a certain subcategory of the Higgs bundles on $A$. To do so, our central object of study is the category of vector bundles for the $v$-topology on the diamond associated to $A$. We prove that any pro-finite-etale $v$-vector bundle can be built from pro-finite-etale $v$-line bundles and unipotent $v$-bundles. To describe the latter, we extend the theory of universal vector extensions to the $v$-topology and use this to generalize a result of Brion by relating unipotent $v$-bundles on abeloids to representations of vector groups.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا