Do you want to publish a course? Click here

Extreme abundance ratios in the polluted atmosphere of the cool white dwarf NLTT19868

184   0   0.0 ( 0 )
 Added by Adela Kawka
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of intermediate-dispersion spectra and photometric data of the newly identified cool, polluted white dwarf NLTT19868. The spectra obtained with X-shooter on the Very Large Telescope (VLT)-Melipal show strong lines of calcium, and several lines of magnesium, aluminium and iron. We use these spectra and the optical-to-near infrared spectral energy distribution to constrain the atmospheric parameters of NLTT19868. Our analysis shows that NLTT19868 is iron poor with respect to aluminium and calcium. A comparison with other cool, polluted white dwarfs shows that the Fe to Ca abundance ratio (Fe/Ca) varies by up to approximately two orders of magnitudes over a narrow temperature range with NLTT19868 at one extremum in the Fe/Ca ratio and, in contrast, NLTT888 at the other extremum. The sample shows evidence of extreme diversity in the composition of the accreted material: In the case of NLTT888, the inferred composition of the accreted matter is akin to iron-rich planetary core composition, while in the case of NLTT19868 it is close to mantle or bulk-Earth composition depleted by subsequent chemical separation at the bottom of the convection zone.



rate research

Read More

We present the first metal-polluted single white dwarf star identified through Gaia DR2. GaiaJ1738-0826, selected from color and absolute magnitude cuts in the Gaia DR2 data, was discovered to have strong Ca~II absorption in initial spectroscopic characterization at Lick Observatory. Notably, GaiaJ1738-0826 resembles in many ways the first confirmed metal-polluted hydrogen atmosphere white dwarf, the DAZ G74-7.
We report the discovery of a new, polluted, magnetic white dwarf in the Luyten survey of high-proper motion stars. High-dispersion spectra of NLTT 7547 reveal a complex heavy element line spectrum in a cool (~5 200 K) hydrogen-dominated atmosphere showing the effect of a surface averaged field of 163 kG, consistent with a 240 kG centred dipole, although the actual field structure remains uncertain. The abundance pattern shows the effect of accreted material with a distinct magnesium-rich flavour. Combined with earlier identifications, this discovery supports a correlation between the incidence of magnetism in cool white dwarfs and their contamination by heavy elements.
We have made high precision polarimetric observations of the polluted white dwarf G29-38 with the HIgh Precision Polarimetric Instrument 2. The observations were made at two different observatories -- using the 8.1-m Gemini North Telescope and the 3.9-m Anglo AustralianTelescope -- and are consistent with each other. After allowing for a small amount of interstellar polarization, the intrinsic linear polarization of the system is found to be 275.3 +/- 31.9 parts-per-million at a position angle of 90.8 +/- 3.8 degrees in the SDSS g band. We compare the observed polarization with the predictions of circumstellar disc models. The measured polarization is small in the context of the models we develop which only allows us to place limits on disc inclination and Bond albedo for optically thin disc geometries. In this case either the inclination is near face-on or the albedo is small -- likely in the range 0.05 to 0.15 -- which is in line with other debris disc measurements. A preliminary search for the effects of G29-38s pulsations in the polarization signal produced inconsistent results. This may be caused by beating effects, indicate a clumpy dust distribution, or be a consequence of measurement systematics.
The spectroscopic catalogue of white dwarf-main sequence (WDMS) binaries from the Sloan Digital Sky Survey (SDSS) is the largest and most homogeneous sample of compact binary stars currently known. However, because of selection effects, the current sample is strongly biased against systems containing cool white dwarfs and/or early type companions, which are predicted to dominate the intrinsic population. In this study we present colour selection criteria that combines optical (ugriz DR8 SDSS) plus infrared (yjhk DR9 UKIRT Infrared Sky Survey (UKIDSS), JHK Two Micron All Sky Survey (2MASS) and/or w1w2 Wide-Field Infrared Survey Explorer (WISE)) magnitudes to select 3419 photometric candidates of harbouring cool white dwarfs and/or dominant (M dwarf) companions. We demonstrate that 84 per cent of our selected candidates are very likely genuine WDMS binaries, and that the white dwarf effective temperatures and secondary star spectral types of 71 per cent of our selected sources are expected to be below <~10000-15000K, and concentrated at ~M2-3, respectively. We also present an updated version of the spectroscopic SDSS WDMS binary catalogue, which incorporates 47 new systems from SDSS DR8. The bulk of the DR8 spectroscopy is made up of main-sequence stars and red giants that were targeted as part of the Sloan Extension for Galactic Understanding and Exploration (SEGUE) Survey, therefore the number of new spectroscopic WDMS binaries in DR8 is very small compared to previous SDSS data releases. Despite their low number, DR8 WDMS binaries are found to be dominated by systems containing cool white dwarfs and therefore represent an important addition to the spectroscopic sample. The updated SDSS DR8 spectroscopic catalogue of WDMS binaries consists of 2316 systems.
The Teff = 20,800 K white dwarf WD 1536+520 is shown to have broadly solar abundances of the major rock forming elements O, Mg, Al, Si, Ca, and Fe, together with a strong relative depletion in the volatile elements C and S. In addition to the highest metal abundances observed to date, including log(O/He) = -3.4, the helium-dominated atmosphere has an exceptional hydrogen abundance at log(H/He) = -1.7. Within the uncertainties, the metal-to-metal ratios are consistent with the accretion of an H2O-rich and rocky parent body, an interpretation supported by the anomalously high trace hydrogen. The mixed atmosphere yields unusually short diffusion timescales for a helium atmosphere white dwarf, of no more than a few hundred yr, and equivalent to those in a much cooler, hydrogen-rich star. The overall heavy element abundances of the disrupted parent body deviate modestly from a bulk Earth pattern, and suggest the deposition of some core-like material. The total inferred accretion rate is 4.2e9 g/s, and at least 4 times higher than any white dwarf with a comparable diffusion timescale. Notably, when accretion is exhausted in this system, both metals and hydrogen will become undetectable within roughly 300 Myr, thus supporting a scenario where the trace hydrogen is related to the ongoing accretion of planetary debris.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا