Role of Arsenic in Iron-based Superconductivity at Atomic Scale


Abstract in English

In iron-based superconductors, a unique tri-layer Fe-As (Se, Te, P) plays an essential role in controlling the electronic properties, especially the Cooper pairing interaction. Here we use scanning tunneling microscopy/spectroscopy (STM/S) to investigate the role of arsenic atom in superconducting Ba0.4K0.6Fe2As2 by directly breaking and restoring the Fe-As structure at atomic scale. After the up-As-layer peeled away, the tunneling spectrum of the exposed iron surface reveals a shallow incoherent gap, indicating a severe suppression of superconductivity without arsenic covering. When a pair of arsenic atoms is placed on such iron surface, a localized topographic feature is formed due to Fe-As orbital hybridization, and the superconducting coherent peaks recover locally with the gap magnitude the same as that on the iron-layer fully covered by arsenic. These observations unravel the Fe-As interactions on an atomic scale and imply its essential roles in the iron-based superconductivity.

Download