Do you want to publish a course? Click here

Nonlocal Nambu-Jona-Lasinio model and chiral chemical potential

69   0   0.0 ( 0 )
 Added by Marco Frasca
 Publication date 2016
  fields
and research's language is English
 Authors Marco Frasca




Ask ChatGPT about the research

We derive the critical temperature in a nonlocal Nambu-Jona-Lasinio model with the presence of a chiral chemical potential. The model we consider uses a form factor derived from recent studies of the gluon propagator in Yang-Mills theory and has the property to fit in excellent way the form factor arising from the instanton liquid picture for the vacuum of the theory. Nambu-Jona-Lasinio model is derived form quantum chromodynamics providing all the constants of the theory without any need for fits. We show that the critical temperature in this case always exists and increases as the square of the chiral chemical potential. The expression we obtain for the critical temperature depends on the mass gap that naturally arises from Yang-Mills theory at low-energy as also confirmed by lattice computations.



rate research

Read More

The effects of meson fluctuations are studied in a nonlocal generalization of the Nambu-Jona-Lasinio model, by including terms of next-to-leading order (NLO) in 1/N_c. In the model with only scalar and pseudoscalar interactions NLO contributions to the quark condensate are found to be very small. This is a result of cancellation between virtual mesons and Fock terms, which occurs for the parameter sets of most interest. In the quark self-energy, similar cancellations arise in the tadpole diagrams, although not in other NLO pieces which contribute at the sim 25% level. The effects on pion properties are also found to be small. NLO contributions from real $pipi$ intermediate states increase the sigma meson mass by $sim 30%$. In an extended model with vector and axial interactions, there are indications that NLO effects could be larger.
165 - H. Abuki , R. Anglani , R. Gatto 2008
We study the interplay between the chiral and the deconfinement transitions, both at high temperature and high quark chemical potential, by a non local Nambu-Jona Lasinio model with the Polyakov loop in the mean field approximation and requiring neutrality of the ground state. We consider three forms of the effective potential of the Polyakov loop: two of them with a fixed deconfinement scale, cases I and II, and the third one with a $mu$ dependent scale, case III. In the cases I and II, at high chemical potential $mu$ and low temperature $T$ the main contribution to the free energy is due to the Z(3)-neutral three-quark states, mimicking the quarkyonic phase of the large $N_c$ phase diagram. On the other hand in the case III the quarkyonic window is shrunk to a small region. Finally we comment on the relations of these results to lattice studies and on possible common prospects. We also briefly comment on the coexistence of quarkyonic and color superconductive phases.
In this article we study the nonlocal Nambu--Jona-Lasinio model with a Gaussian regulator in the chiral limit. Finite temperature effects and the presence of a homogeneous magnetic field are considered. The magnetic evolution of the critical temperature for chiral symmetry restoration is then obtained. Here we restrict ourselves to the case of low magnetic field values, being this a complementary discussion to the exisiting analysis in nonlocal models in the strong magnetic field regime.
We study the thermo-magnetic properties of the strong coupling constant G and quark mass M entering the Nambu-Jona-Lasinio model. For this purpose, we compute the quark condensate and compare it to lattice QCD (LQCD) results to extract the behavior of G and M as functions of the magnetic field strength and temperature. We find that at zero temperature, where the LQCD condensate is found to monotonically increase with the field strength, M also increases whereas G remains approximately constant. However, for temperatures above the chiral/deconfinement phase transitions, where the LQCD condensate is found to monotonically decrease with increasing field, M and G also decrease monotonically. For finite temperatures, below the transition temperature, we find that both G and M initially grow and then decrease with increasing field strength. To study possible consequences of the extracted temperature and magnetic field dependence of G and M, we compute the pressure and compare to LQCD results, finding an excellent qualitative agreement. In particular, we show that the transverse pressure, as a function of the field strength, is always negative for temperatures below the transition temperature whereas it starts off being positive and then becomes negative for temperatures above the transition temperature, also in agreement with LQCD results. We also show that for the longitudinal pressure to agree with LQCD calculations, the system should be described as a diamagnet. We argue that the turnover of M and G as functions of temperature and field strength is a key element that drives the behavior of the quark condensate going across the transition temperature and provides clues for a better understanding of the inverse magnetic catalysis phenomenon.
We investigate theta-vacuum effects on the QCD phase diagram for the realistic 2+1 flavor system, using the three-flavor Polyakov-extended Nambu-Jona-Lasinio (PNJL) model and the entanglement PNJL model as an extension of the PNJL model. The theta-vacuum effects make the chiral transition sharper. For large theta-vacuum angle the chiral transition becomes first order even if the quark number chemical potential is zero, when the entanglement coupling between the chiral condensate and the Polyakov loop is taken into account. We finally propose a way of circumventing the sign problem on lattice QCD with finite theta.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا