Do you want to publish a course? Click here

Layering of Communication Networks and a Forward-Backward Duality

63   0   0.0 ( 0 )
 Added by Michael Cyran
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

In layered communication networks there are only connections between intermediate nodes in adjacent layers. Applying network coding to such networks provides a number of benefits in theory as well as in practice. We propose a layering procedure to transform an arbitrary network into a layered structure. Furthermore, we derive a forward-backward duality for linear network codes, which can be seen as an analogon to the uplink-downlink duality in MIMO communication systems.



rate research

Read More

Molecular communication (MC) allows nanomachines to communicate and cooperate with each other in a fluid environment. The diffusion-based MC is popular but is easily constrained by the transmit distance due to the severe attenuation of molecule concentrations. In this letter, we present a decode-and-forward (DF) relay strategy for the reversible binding receptor in the diffusion-based MC system. The time-varying spatial distribution of the information molecules based on the reversible association and dissociation between ligand and receptor at the surface of receiver is characterized. An analytical expression for the evaluation of expected error probability is derived, and the key factors impacting on the performance are exploited. Results show that with a constant molecular budget, the proposal can improve the performance significantly, and the performance gain can be enhanced by optimizing the position of the relay node and the number of molecules assigned to the source node.
114 - Yi Lou , Qiyue Yu , Julian Cheng 2017
Two weighted selection combining (WSC) schemes are proposed for a differential decode-and-forward relaying system in Rayleigh fading channels. Compared to the conventional selection combining scheme, the decision variable of the relay link is multiplied by a scale factor to combat the error propagation phenomenon. Average bit-error rate (ABER) expressions of the two proposed WSC schemes are derived in closed-form and verified by simulation results. For the second WSC scheme, asymptotic ABER expression and diversity order are derived to gain more insight into this scheme. Moreover, it is demonstrated that both WSC schemes can overcome the extra noise amplification induced by the link adaptive relaying scheme. The first WSC scheme is slightly inferior to the second one, which has a higher complexity. Both proposed WSC schemes outperform the conventional selection combining scheme.
127 - Oner Orhan , Elza Erkip 2015
Energy harvesting multi-hop networks allow for perpetual operation of low cost, limited range wireless devices. Compared with their battery operated counterparts, the coupling of energy and data causality constraints with half duplex relay operation makes it challenging to operate such networks. In this paper, a throughput maximization problem for energy harvesting two-hop networks with decode-and-forward half-duplex relays is investigated. For a system with two parallel relays, various combinations of the following four transmission modes are considered: Broadcast from the source, multi-access from the relays, and successive relaying phases I and II. Optimal transmission policies for one and two parallel relays are studied under the assumption of non-causal knowledge of energy arrivals and finite size relay data buffers. The problem is formulated using a convex optimization framework, which allows for efficient numerical solutions and helps identify important properties of optimal policies. Numerical results are presented to provide throughput comparisons and to investigate the impact of multiple relays, size of relay data buffers, transmission modes, and energy harvesting on the throughput.
This paper reviews the theoretical and practical principles of the broadcast approach to communication over state-dependent channels and networks in which the transmitters have access to only the probabilistic description of the time-varying states while remaining oblivious to their instantaneous realizations. When the temporal variations are frequent enough, an effective long-term strategy is adapting the transmission strategies to the systems ergodic behavior. However, when the variations are infrequent, their temporal average can deviate significantly from the channels ergodic mode, rendering a lack of instantaneous performance guarantees. To circumvent a lack of short-term guarantees, the {em broadcast approach} provides principles for designing transmission schemes that benefit from both short- and long-term performance guarantees. This paper provides an overview of how to apply the broadcast approach to various channels and network models under various operational constraints.
Computation task service delivery in a computing-enabled and caching-aided multi-user mobile edge computing (MEC) system is studied in this paper, where a MEC server can deliver the input or output datas of tasks to mobile devices over a wireless multicast channel. The computing-enabled and caching-aided mobile devices are able to store the input or output datas of some tasks, and also compute some tasks locally, reducing the wireless bandwidth consumption. The corresponding framework of this system is established, and under the latency constraint, we jointly optimize the caching and computing policy at mobile devices to minimize the required transmission bandwidth. The joint policy optimization problem is shown to be NP-hard, and based on equivalent transformation and exact penalization of the problem, a stationary point is obtained via concave convex procedure (CCCP). Moreover, in a symmetric scenario, gains offered by this approach are derived to analytically understand the influences of caching and computing resources at mobile devices, multicast transmission, the number of mobile devices, as well as the number of tasks on the transmission bandwidth. Our results indicate that exploiting the computing and caching resources at mobile devices can provide significant bandwidth savings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا