We propose a method to generate a single peak at a distinct energy in the ion flux-energy distribution function (IDF) at the electrode surfaces in capacitively coupled plasmas. The technique is based on the tailoring of the driving voltage waveform, i.e. adjusting the phases and amplitudes of the applied harmonics, to optimize the accumulation of ions created by charge exchange collisions and their subsequent acceleration by the sheath electric field. The position of the peak (i.e. the ion energy) and the flux of the ions within the peak of the IDF can be controlled in a wide domain by tuning the parameters of the applied RF voltage waveform, allowing optimization of various applications where surface reactions are induced at particular ion energies.