Do you want to publish a course? Click here

Stability analysis of pressure correction schemes for the Navier-Stokes equations with traction boundary conditions

71   0   0.0 ( 0 )
 Added by Sanghyun Lee
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We present a stability analysis for two different rotational pressure correction schemes with open and traction boundary conditions. First, we provide a stability analysis for a rotational version of the grad-div stabilized scheme of [A. Bonito, J.-L. Guermond, and S. Lee. Modified pressure-correction projection methods: Open boundary and variable time stepping. In Numerical Mathematics and Advanced Applications - ENUMATH 2013, volume 103 of Lecture Notes in Computational Science and Engineering, pages 623-631. Springer, 2015]. This scheme turns out to be unconditionally stable, provided the stabilization parameter is suitably chosen. We also establish a conditional stability result for the boundary correction scheme presented in [E. Bansch. A finite element pressure correction scheme for the Navier-Stokes equations with traction boundary condition. Comput. Methods Appl. Mech. Engrg., 279:198-211, 2014]. These results are shown by employing the equivalence between stabilized gauge Uzawa methods and rotational pressure correction schemes with traction boundary conditions.



rate research

Read More

We study the weak boundary layer phenomenon of the Navier-Stokes equations in a 3D bounded domain with viscosity, $epsilon > 0$, under generalized Navier friction boundary conditions, in which we allow the friction coefficient to be a (1, 1) tensor on the boundary. When the tensor is a multiple of the identity we obtain Navier boundary conditions, and when the tensor is the shape operator we obtain conditions in which the vorticity vanishes on the boundary. By constructing an explicit corrector, we prove the convergence of the Navier-Stokes solutions to the Euler solution as the viscosity vanishes. We do this both in the natural energy norm with a rate of order $epsilon^{3/4}$ as well as uniformly in time and space with a rate of order $epsilon^{3/8 - delta}$ near the boundary and $epsilon^{3/4 - delta}$ in the interior, where $delta, delta$ decrease to 0 as the regularity of the initial velocity increases. This work simplifies an earlier work of Iftimie and Sueur, as we use a simple and explicit corrector (which is more easily implemented in numerical applications). It also improves a result of Masmoudi and Rousset, who obtain convergence uniformly in time and space via a method that does not yield a convergence rate.
This paper presents an arbitrary h.o. accurate ADER DG method on space-time adaptive meshes (AMR) for the solution of two important families of non-linear time dependent PDE for compr. dissipative flows: the compr. Navier-Stokes equations and the equations of visc. and res. MHD in 2 and 3 space-dimensions. The work continues a recent series of papers concerning the development and application of a proper a posteriori subcell FV limiting procedure suitable for DG methods. It is a well known fact that a major weakness of h.o. DG methods lies in the difficulty of limiting discontinuous solutions, which generate spurious oscillations, namely the so-called Gibbs phenomenon. In the present work the main benefits of the MOOD paradigm, i.e. the computational robustness even in the presence of strong shocks, are preserved and the numerical diffusion is considerably reduced also for the limited cells by resorting to a proper sub-grid. An important feature of our new scheme is its ability to cure even floating point errors that may occur during a simulation, for example when taking real roots of negative numbers or after divisions by zero. We apply the whole approach for the first time to the equations of compr. gas dynamics and MHD in the presence of viscosity, thermal conductivity and magnetic resistivity, therefore extending our family of adaptive ADER-DG schemes to cases for which the numerical fluxes also depend on the gradient of the state vector. The distinguished high-resolution properties of the presented numerical scheme stands out against a wide number of non-trivial test cases both for the compr. Navier-Stokes and the viscous and resistive MHD equations. The present results show clearly that the shock-capturing capability of the news schemes are significantly enhanced within a cell-by-cell Adaptive Mesh Refinement implementation together with time accurate local time stepping (LTS).
In two dimensions, we propose and analyze an a posteriori error estimator for finite element approximations of the stationary Navier Stokes equations with singular sources on Lipschitz, but not necessarily convex, polygonal domains. Under a smallness assumption on the continuous and discrete solutions, we prove that the devised error estimator is reliable and locally efficient. We illustrate the theory with numerical examples.
133 - Hongjie Dong , Xumin Gu 2013
We consider suitable weak solutions of the incompressible Navier--Stokes equations in two cases: the 4D time-dependent case and the 6D stationary case. We prove that up to the boundary, the two-dimensional Hausdorff measure of the set of singular points is equal to zero in both cases.
We establish several boundary $varepsilon$-regularity criteria for suitable weak solutions for the 3D incompressible Navier-Stokes equations in a half cylinder with the Dirichlet boundary condition on the flat boundary. Our proofs are based on delicate iteration arguments and interpolation techniques. These results extend and provide alternative proofs for the earlier interior results by Vasseur [18], Choi-Vasseur [2], and Phuc-Guevara [6].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا