Do you want to publish a course? Click here

Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event

90   0   0.0 ( 0 )
 Added by Matthias Kadler
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The discovery of extraterrestrial very-high-energy neutrinos by the IceCube collaboration has launched a quest for the identification of their astrophysical sources. Gamma-ray blazars have been predicted to yield a cumulative neutrino signal exceeding the atmospheric background above energies of 100 TeV, assuming that both the neutrinos and the gamma-ray photons are produced by accelerated protons in relativistic jets. Since the background spectrum falls steeply with increasing energy, the individual events with the clearest signature of being of an extraterrestrial origin are those at PeV energies. Inside the large positional-uncertainty fields of the first two PeV neutrinos detected by IceCube, the integrated emission of the blazar population has a sufficiently high electromagnetic flux to explain the detected IceCube events, but fluences of individual objects are too low to make an unambiguous source association. Here, we report that a major outburst of the blazar PKS B1424-418 occurred in temporal and positional coincidence with the third PeV-energy neutrino event (IC35) detected by IceCube. Based on an analysis of the full sample of gamma-ray blazars in the IC35 field and assuming a photo-hadronic emission model, we show that the long-term average gamma-ray emission of blazars as a class is in agreement with both the measured all-sky flux of PeV neutrinos and the spectral slope of the IceCube signal. The outburst of PKS B1424-418 has provided an energy output high enough to explain the observed PeV event, indicative of a direct physical association.



rate research

Read More

78 - Ruo-Yu Liu , Kai Wang , Rui Xue 2018
Although many high-energy neutrinos detected by the IceCube telescope are believed to have anextraterrestrial origin, their astrophysical sources remain a mystery. Recently, an unprecedenteddiscovery of a high-energy muon neutrino event coincident with a multiwavelength flare from ablazar, TXS 0506+056, shed some light on the origin of the neutrinos. It is usually believed that ablazar is produced by a relativistic jet launched from an accreting supermassive black hole (SMBH).Here we show that the high-energy neutrino event can be interpreted by the inelastic hadronuclearinteractions between the accelerated cosmic-ray protons in the relativistic jet and the dense gasclouds in the vicinity of the SMBH. Such a scenario only requires a moderate proton power in thejet, which could be much smaller than that required in the conventional hadronic model whichinstead calls upon the photomeson process. Meanwhile, the flux of the multiwavelength flare fromthe optical to gamma-ray band can be well explained by invoking a second radiation zone in thejet at a larger distance to the SMBH. In our model, the neutrino emission lasts a shorter time thanthe multiwavelength flare so the neutrino event is not necessarily correlated with the flare but it is probably accompanied by a spectrum hardening above a few GeV.
We present a relationship, E_ u^{max} = m_{ u} M_{Planck}/M_{weak}, among the highest observed neutrino energy (~PeV) and the neutrino mass, the weak scale, and the Planck energy. We then discuss some tests of this relationship, and present some theoretical constructs which motivate the relationship. It is possible that all massive particles are subject to maximum energies given by similar relationships, although only the neutrino seems able to offer interesting phenomenology. We discuss implications which include no neutrino detections at energies greater than PeV, and changes in expectations for the highest energy cosmic rays. A virtue of this hypothesis is that it is easily invalidated should neutrinos be observed with energies much great than the PeV scale. An almost inescapable implication is that Lorentz Invariance is a low energy principle, yet it appears that violation may be only observable in high-energy astrophysical neutrinos.
Cosmic neutrinos provide a unique window into the otherwise-hidden mechanism of particle acceleration in astrophysical objects. A flux of high-energy neutrinos was discovered in 2013, and the IceCube Collaboration recently associated one high-energy neutrino with a flare from the relativistic jet of an active galaxy pointed towards the Earth. However a combined analysis of many similar active galaxies revealed no excess from the broader population, leaving the vast majority of the cosmic neutrino flux unexplained. Here we present the association of a radio-emitting tidal disruption event (AT2019dsg) with another high-energy neutrino, identified as part of our systematic search for optical counterparts to high-energy neutrinos with the Zwicky Transient Facility (ZTF). The probability of finding any radio-emitting tidal disruption event by chance is 0.5%, while the probability of finding one as bright in bolometric energy flux as AT2019dsg is 0.2%. Our electromagnetic observations can be explained through a multi-zone model, with radio analysis revealing a central engine, embedded in a UV photosphere, that powers an extended synchrotron-emitting outflow. This provides an ideal site for PeV neutrino production. The association suggests that tidal disruption events contribute to the cosmic neutrino flux. Unlike previous work which considered the rare subset of tidal disruption events with relativistic jets, our observations of AT2019dsg suggest an empirical model with a mildly-relativistic outflow.
159 - The IceCube , Fermi-LAT , MAGIC 2018
Individual astrophysical sources previously detected in neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017 we detected a high-energy neutrino, IceCube-170922A, with an energy of approximately 290 TeV. Its arrival direction was consistent with the location of a known gamma-ray blazar TXS 0506+056, observed to be in a flaring state. An extensive multi-wavelength campaign followed, ranging from radio frequencies to gamma-rays. These observations characterize the variability and energetics of the blazar and include the first detection of TXS 0506+056 in very-high-energy gamma-rays. This observation of a neutrino in spatial coincidence with a gamma-ray emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrinos.
The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most energetic IceCube events. Objects like these are prime candidates to be the source of the highest-energy cosmic rays, and thus of associated neutrino emission. We present an analysis of neutrino emission from the six blazars using observations with the ANTARES neutrino telescope.The standard methods of the ANTARES candidate list search are applied to six years of data to search for an excess of muons --- and hence their neutrino progenitors --- from the directions of the six blazars described by the TANAMI Collaboration, and which are possibly associated with two IceCube events. Monte Carlo simulations of the detector response to both signal and background particle fluxes are used to estimate the sensitivity of this analysis for different possible source neutrino spectra. A maximum-likelihood approach, using the reconstructed energies and arrival directions of through-going muons, is used to identify events with properties consistent with a blazar origin.Both blazars predicted to be the most neutrino-bright in the TANAMI sample (1653$-$329 and 1714$-$336) have a signal flux fitted by the likelihood analysis corresponding to approximately one event. This observation is consistent with the blazar-origin hypothesis of the IceCube event IC14 for a broad range of blazar spectra, although an atmospheric origin cannot be excluded. No ANTARES events are observed from any of the other four blazars, including the three associated with IceCube event IC20. This excludes at a 90% confidence level the possibility that this event was produced by these blazars unless the neutrino spectrum is flatter than $-2.4$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا