No Arabic abstract
The emergent behavior of spin liquids that are born out of geometrical frustration makes them an intriguing state of matter. We show that in the quantum kagome antiferromagnet ZnCu$_3$(OH)$_6$SO$_4$ several different correlated, yet fluctuating states exist. By combining complementary local-probe techniques with neutron scattering, we discover a crossover from a critical regime into a gapless spin-liquid phase with decreasing temperature. An additional unconventional instability of the latter phase leads to a second, distinct spin-liquid state that is stabilized at the lowest temperatures. We advance such complex behavior as a feature common to different frustrated quantum magnets.
The $S$ = $frac{1}{2}$ kagome Heisenberg antiferromagnet (KHA) is a leading model hosting a quantum spin liquid (QSL), but the exact nature of its ground state remains a key issue under debate. In the previously well-studied candidate materials, magnetic defects always dominate the low-energy spectrum and hinder the detection of the intrinsic nature. We demonstrate that the new single crystal of YCu$_3$[OH(D)]$_{6.5}$Br$_{2.5}$ is a perfect KHA without evident magnetic defects ($ll$ 0.8%). Through fitting the magnetic susceptibilities of the orientated single crystals, we find the spin system with weak anisotropic interactions and with first-, second-, and third-neighbor couplings, $J_1$ $sim$ 56 K and $J_2$ $sim$ $J_3$ $sim$ 0.1$J_1$, belongs to the continuous family of fully frustrated KHAs. No conventional freezing is observed down to 0.36 K $sim$ 0.006$J_1$, and the raw specific heat exhibits a nearly quadratic temperature dependence below 1 K $sim$ 0.02$J_1$, well consistent with a gapless (spin gap $leq$ 0.025$J_1$) Dirac QSL.
Magnetic susceptibility, NMR, muSR, and inelastic neutron scattering measurements show that kapellasite, Cu3Zn(OH)6Cl2, a geometrically frustrated spin-1/2 kagome antiferromagnet polymorphous with the herbertsmithite mineral, is a gapless spin liquid with frustrated interactions showing unusual dynamic short-range correlations of non-coplanar cuboc2 type which persist down to 20 mK. The Hamiltonian is determined from a fit of a high-temperature series expansion to thermodynamical data. The experimental data are compared to theoretical calculations using the Schwinger-boson approach.
We investigate the spin-1/2 Heisenberg antiferromagnet on the kagome lattice with breathing anisotropy (i.e. with weak and strong triangular units), constructing an improved simplex Resonating Valence Bond (RVB) ansatz by successive applications (up to three times) of local quantum gates which implement a filtering operation on the bare nearest-neighbor RVB state. The resulting Projected Entangled Pair State involves a small number of variational parameters (only one at each level of application) and preserves full lattice and spin-rotation symmetries. Despite its simple analytic form, the simplex RVB provides very good variational energies at strong and even intermediate breathing anisotropy. We show that it carries $Z_2$ topological order which does not fade away under the first few applications of the quantum gates, suggesting that the RVB topological spin liquid becomes a competing ground state candidate for the kagome antiferromagnet at large breathing anisotropy.
The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of great debate. We conducted 17-O single crystal NMR measurements of the S=1/2 kagome lattice in herbertsmithite ZnCu$_3$(OH)$_6$Cl$_2$, which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrate that the intrinsic local spin susceptibility $chi_{kagome}$ deduced from the 17-O NMR frequency shift asymptotes to zero below temperature T ~ 0.03 J, where J ~ 200 K is the Cu-Cu super-exchange interaction. Combined with the magnetic field dependence of $chi_{kagome}$ we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.
The nature of the ground state of the spin $S=1/2$ Heisenberg antiferromagnet on the kagome lattice with breathing anisotropy (i.e., with different superexchange couplings $J_{vartriangle}$ and $J_{triangledown}$ within elementary up- and down-pointing triangles) is investigated within the framework of Gutzwiller projected fermionic wave functions and Monte Carlo methods. We analyze the stability of the U(1) Dirac spin liquid with respect to the presence of fermionic pairing that leads to a gapped $mathbb{Z}_{2}$ spin liquid. For several values of the ratio $J_{triangledown}/J_{vartriangle}$, the size scaling of the energy gain due to the pairing fields and the variational parameters are reported. Our results show that the energy gain of the gapped spin liquid with respect to the gapless state either vanishes for large enough system size or scales to zero in the thermodynamic limit. Similarly, the optimized pairing amplitudes (responsible for opening the spin gap) are shown to vanish in the thermodynamic limit. Our outcome is corroborated by the application of one and two Lanczos steps to the gapless and gapped wave functions, for which no energy gain of the gapped state is detected when improving the quality of the variational states. Finally, we discuss the competition with the simplex $mathbb{Z}_{2}$ resonating-valence-bond spin liquid, valence-bond crystal, and nematic states in the strongly anisotropic regime, i.e., $J_{triangledown} ll J_{vartriangle}$.