Photocurrents in Bi2Se3: bulk versus surface, and injection versus shift currents


Abstract in English

Optical injection and detection of charge currents can complement conventional transport and photoemission measurements without the necessity of invasive contact that may disturb the system being examined. This is a particular concern for the surface states of a topological insulator. In this work one- and two-color sources of photocurrents are examined in epitaxial, thin films of Bi2Se3. We demonstrate that optical excitation and terahertz detection simultaneously captures one- and two- color photocurrent contributions, as previously not required in other material systems. A method is devised to isolate the two components, and in doing so each can be related to surface or bulk excitations through symmetry. This strategy allows surface states to be examined in a model system, where they have independently been verified with angle-resolved photoemission spectroscopy.

Download