We report broadband spin-wave spectroscopy on kagome artificial spin ice (ASI) made of large arrays of interconnected Ni$_{80}$Fe$_{20}$ nanobars. Spectra taken in saturated and disordered states exhibit a series of resonances with characteristic magnetic field dependencies. Making use of micromagnetic simulations, we identify resonances that reflect the spin-solid-state and monopole-antimonopole pairs on Dirac strings. The latter resonances allow for the generation of highly-charged vertices in ASIs via microwave assisted switching. Our findings open further perspectives for fundamental studies on ASIs and their usage in reprogrammable magnonics.
We report angular-dependent spin-wave spectroscopy on kagome artificial spin ice made of large arrays of interconnected Ni80Fe20 nanobars. Spectra taken in saturated and disordered states exhibit a series of resonances with characteristic in-plane angular dependencies. Micromagnetic simulations allow us to interpret characteristic resonances of a two-step magnetization reversal of the nanomagnets. The dynamic properties are consistent with topological defects that are provoked via a magnetic field applied at specific angles. Simulations that we performed on previously investigated kagome artificial spin ice consisting of isolated nanobars show characteristic discrepancies in the spin wave modes which we explain by the absence of vertices.
We present results of ferromagnetic resonance (FMR) experiments and micromagnetic simulations for a distorted, 2D Kagome artificial spin ice. The distorted structure is created by continuously modulating the 2D primitive lattice translation vectors of a periodic honeycomb lattice, according to an aperiodic Fibonacci sequence used to generate 1D quasicrystals. Experimental data and micromagnetic simulations show the Fibonacci distortion causes broadening and splitting of FMR modes into multiple branches, which accompany the increasing number of segment lengths and orientations that develop with increasing distortion. When the applied field is increased in the opposite direction to the net magnetization of a segment, spin wave modes appear, disappear or suddenly shift, to signal segment magnetization reversal events. These results show the complex behavior of reversal events, as well as well-defined frequencies and frequency-field slopes of FMR modes, can be precisely tuned by varying the severity of the aperiodic lattice distortion. This type of distorted structure could therefore provide a new tool for the design of complicated magnonic systems.
We investigate spin dynamics of artificial spin ice (ASI) where topological defects confine magnon modes in Ni$_{81}$Fe$_{19}$ nanomagnets arranged on an interconnected kagome lattice. Brillouin light scattering microscopy performed on magnetically disordered states exhibit a series of magnon resonances which depend on topological defect configurations detected by magnetic force microscopy. Nanomagnets on a Dirac string and between a monopole-antimonopole pair show pronounced modifications in magnon frequencies both in experiments and simulations. Our work is key for the creation and annihilation of Dirac strings via microwave assisted switching and reprogrammable magnonics based on ASIs.
Arrays of suitably patterned and arranged magnetic elements may display artificial spin-ice structures with topological defects in the magnetization, such as Dirac monopoles and Dirac strings. It is known that these defects strongly influence the quasi-static and equilibrium behavior of the spin-ice lattice. Here we study the eigenmode dynamics of such defects in a square lattice consisting of stadium-like thin film elements using micromagnetic simulations. We find that the topological defects display distinct signatures in the mode spectrum, providing a means to qualitatively and quantitatively analyze monopoles and strings which can be measured experimentally.
We have measured the angular dependence of ferromagnetic resonance (FMR) spectra for Fibonacci-distorted, Kagome artificial spin ice (ASI). The number of strong modes in the FMR spectra depend on the orientation of the applied DC magnetic field. In addition, discontinuities observed in the FMR field-frequency dispersion curves also depend on DC field orientation, and signal a multi-step DC magnetization reversal, which is caused by the reduced energy degeneracy of Fibonacci-distorted vertices. The results suggest the orientation of applied magnetic field and severity of Fibonacci distortion constitute control variables for FMR modes and multi-step reversal in future magnonic devices and magnetic switching systems.
V. S. Bhat
,F. Heimbach
,I. Stasinopoulos
.
(2016)
.
"Magnetization Dynamics of Topological Defects and the Spin Solid in Kagome Artificial Spin Ice"
.
Vinayak Bhat
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا