Do you want to publish a course? Click here

NEXT: In-Network Nonconvex Optimization

48   0   0.0 ( 0 )
 Added by Paolo Di Lorenzo
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We study nonconvex distributed optimization in multi-agent networks with time-varying (nonsymmetric) connectivity. We introduce the first algorithmic framework for the distributed minimization of the sum of a smooth (possibly nonconvex and nonseparable) function - the agents sum-utility - plus a convex (possibly nonsmooth and nonseparable) regularizer. The latter is usually employed to enforce some structure in the solution, typically sparsity. The proposed method hinges on successive convex approximation techniques while leveraging dynamic consensus as a mechanism to distribute the computation among the agents: each agent first solves (possibly inexactly) a local convex approximation of the nonconvex original problem, and then performs local averaging operations. Asymptotic convergence to (stationary) solutions of the nonconvex problem is established. Our algorithmic framework is then customized to a variety of convex and nonconvex problems in several fields, including signal processing, communications, networking, and machine learning. Numerical results show that the new method compares favorably to existing distributed algorithms on both convex and nonconvex problems.



rate research

Read More

Existing nonconvex statistical optimization theory and methods crucially rely on the correct specification of the underlying true statistical models. To address this issue, we take a first step towards taming model misspecification by studying the high-dimensional sparse phase retrieval problem with misspecified link functions. In particular, we propose a simple variant of the thresholded Wirtinger flow algorithm that, given a proper initialization, linearly converges to an estimator with optimal statistical accuracy for a broad family of unknown link functions. We further provide extensive numerical experiments to support our theoretical findings.
140 - Yuhao Ding , Javad Lavaei , 2019
A major limitation of online algorithms that track the optimizers of time-varying nonconvex optimization problems is that they focus on a specific local minimum trajectory, which may lead to poor spurious local solutions. In this paper, we show that the natural temporal variation may help simple online tracking methods find and track time-varying global minima. To this end, we investigate the properties of a time-varying projected gradient flow system with inertia, which can be regarded as the continuous-time limit of (1) the optimality conditions for a discretized sequential optimization problem with a proximal regularization and (2) the online tracking scheme. We introduce the notion of the dominant trajectory and show that the inherent temporal variation could re-shape the landscape of the Lagrange functional and help a proximal algorithm escape the spurious local minimum trajectories if the global minimum trajectory is dominant. For a problem with twice continuously differentiable objective function and constraints, sufficient conditions are derived to guarantee that no matter how a local search method is initialized, it will track a time-varying global solution after some time. The results are illustrated on a benchmark example with many local minima.
Distributed optimization is concerned with using local computation and communication to realize a global aim of optimizing the sum of local objective functions. It has gained wide attention for a variety of applications in networked systems. This paper addresses a class of constrained distributed nonconvex optimization problems involving univariate objective functions, aiming to achieve global optimization without requiring local evaluations of gradients at every iteration. We propose a novel algorithm named CPCA, exploiting the notion of combining Chebyshev polynomial approximation, average consensus and polynomial optimization. The proposed algorithm is i) able to obtain $epsilon$ globally optimal solutions for any arbitrarily small given accuracy $epsilon$, ii) efficient in terms of both zeroth-order queries (i.e., evaluations of function values) and inter-agent communication, and iii) distributed terminable when the specified precision requirement is met. The key insight is to use polynomial approximations to substitute for general objective functions, and turn to solve an easier approximate version of the original problem. Due to the nice analytic properties owned by polynomials, this approximation not only facilitates efficient global optimization, but also allows the design of gradient-free iterations to reduce cumulative costs of queries and achieve geometric convergence when nonconvex problems are solved. We provide comprehensive analysis of the accuracy and complexities of the proposed algorithm.
99 - H. Chen , H. C. Wu , S. C. Chan 2019
This paper proposes a novel stochastic version of damped and regularized BFGS method for addressing the above problems.
As communication networks are growing at a fast pace, the need for more scalable approaches to operate such networks is pressing. Decentralization and locality are key concepts to provide scalability. Existing models for which local algorithms are designed fail to model an important aspect of many modern communication networks such as software-defined networks: the possibility to precompute distributed network state. We take this as an opportunity to study the fundamental question of how and to what extent local algorithms can benefit from preprocessing. In particular, we show that preprocessing allows for significant speedups of various networking problems. A main benefit is the precomputation of structural primitives, where purely distributed algorithms have to start from scratch. Maybe surprisingly, we also show that there are strict limitations on how much preprocessing can help in different scenarios. To this end, we provide approximation bounds for the maximum independent set problem---which however show that our obtained speedups are asymptotically optimal. Even though we show that physical link failures in general hinder the power of preprocessing, we can still facilitate the precomputation of symmetry breaking processes to bypass various runtime barriers. We believe that our model and results are of interest beyond the scope of this paper and apply to other dynamic networks as well.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا