Do you want to publish a course? Click here

Electromechanically Tunable Suspended Optical Nano-antenna

122   0   0.0 ( 0 )
 Added by Kai Chen
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Coupling mechanical degrees of freedom with plasmonic resonances has potential applications in optomechanics, sensing, and active plasmonics. Here we demonstrate a suspended two-wire plasmonic nano-antenna acting like a nano-electrometer. The antenna wires are supported and electrically connected via thin leads without disturbing the antenna resonance. As a voltage is applied, equal charges are induced on both antenna wires. The resulting equilibrium between the repulsive Coulomb force and the restoring elastic bending force enables us to precisely control the gap size. As a result the resonance wavelength and the field enhancement of the suspended optical nano-antenna (SONA) can be reversibly tuned. Our experiments highlight the potential to realize large bandwidth optical nanoelectromechanical systems (NEMS).



rate research

Read More

We investigate the optical response of graphene nanoribbons (GNRs) using the broadband nonlinear generation and detection capabilities of nanoscale junctions created at the LaAlO$_3$/SrTiO$_3$ interface. GNR nanoclusters measured to be as small as 1-2 GNRs in size are deposited on the LaAlO$_3$ surface with an atomic force microscope tip. Time-resolved nonlinear optical probes of GNR nanoclusters reveal a strong, gate-tunable second and third harmonic response, as well as strong extinction of visible to near-infrared (VIS-NIR) light at distinct wavelengths, similar to previous reports with graphene.
The strong excitonic effect in monolayer transition metal dichalcogenide (TMD) semiconductors has enabled many fascinating light-matter interaction phenomena. Examples include strongly coupled exciton-polaritons and nearly perfect atomic monolayer mirrors. The strong light-matter interaction also opens the door for dynamical control of mechanical motion through the exciton resonance of monolayer TMDs. Here we report the observation of exciton-optomechanical coupling in a suspended monolayer MoSe2 mechanical resonator. By moderate optical pumping near the MoSe2 exciton resonance, we have observed optical damping and anti-damping of mechanical vibrations as well as the optical spring effect. The exciton-optomechanical coupling strength is also gate-tunable. Our observations can be understood in a model based on photothermal backaction and gate-induced mirror symmetry breaking in the device structure. The observation of gate-tunable exciton-optomechanical coupling in a monolayer semiconductor may find applications in nanoelectromechanical systems (NEMS) and in exciton-optomechanics.
Pristine, undoped graphene has a constant absorption of 2.3 % across the visible to near-infrared (VIS-NIR) region of the electromagnetic spectrum. Under certain conditions, such as nanostructuring and intense gating, graphene can interact more robustly with VIS-NIR light and exhibit a large nonlinear optical response. Here, we explore the optical properties of graphene/LaAlO$_3$/SrTiO$_3$ nanostructures, where nanojunctions formed at the LaAlO$_3$/SrTiO$_3$ interface enable large (~10$^8$ V/m) electric fields to be applied to graphene over a scale of ~10 nm. Upon illumination with ultrafast VIS-NIR light, graphene/LaAlO$_3$/SrTiO$_3$ nanostructures produce broadband THz emission as well as a sum-frequency generated (SFG) response. Strong spectrally sharp, gate-tunable extinction features (>99.99%) are observed in both the VIS-NIR and SFG regions alongside significant intensification of the nonlinear response. The observed gate-tunable strong graphene-light interaction and nonlinear optical response are of fundamental interest and open the way for future exploitation in graphene-based optical devices.
We report a novel method for the fabrication of superconducting nanodevices based on niobium. The well-known difficulties of lithographic patterning of high-quality niobium are overcome by replacing the usual organic resist mask by a metallic one. The quality of the fabrication procedure is demonstrated by the realization and characterization of long and narrow superconducting lines and niobium-gold-niobium proximity SQUIDs.
Here, we present a micro-electromechanical system (MEMS) for the investigation of the electromechanical coupling in graphene and potentially related 2D materials. Key innovations of our technique include: (1) the integration of graphene into silicon-MEMS technology; (2) full control over induced strain fields and doping levels within the graphene membrane and their characterization via spatially resolved confocal Raman spectroscopy; and (3) the ability to detect the mechanical coupling of the graphene sheet to the MEMS device with via their mechanical resonator eigenfrequencies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا