No Arabic abstract
Two-dimensional Scarf~II quantum model is considered in the framework of Supersymmetrical Quantum Mechanics (SUSY QM). Previously obtained results for this integrable system are systematized, and some new properties are derived. In particular, it is shown that the model is exactly or quasi-exactly solvable in different regions of parameter of the system. The degeneracy of the spectrum is detected for some specific values of parameters. The action of the symmetry operators of fourth order in momenta is calculated for the arbitrary wave functions, obtained by means of double shape invariance.
Based on the results published recently [SciPost Phys. 7, 026 (2019)], the influence of surfaces and boundary fields are calculated for the ferromagnetic anisotropic square lattice Ising model on finite lattices as well as in the finite-size scaling limit. Starting with the open cylinder, we independently apply boundary fields on both sides which can be either homogeneous or staggered, representing different combinations of boundary conditions. We confirm several predictions from scaling theory, conformal field theory and renormalisation group theory: we explicitly show that anisotropic couplings enter the scaling functions through a generalised aspect ratio, and demonstrate that open and staggered boundary conditions are asymptotically equal in the scaling regime. Furthermore, we examine the emergence of the surface tension due to one antiperiodic boundary in the system in the presence of symmetry breaking boundary fields, again for finite systems as well as in the scaling limit. Finally, we extend our results to the antiferromagnetic Ising model.
Fermionic systems differ from their bosonic counterparts, the main difference with regard to symmetry considerations being that $T^2=-1$ for fermionic systems. In PT-symmetric quantum mechanics an operator has both PT and CPT adjoints. Fermionic operators $eta$, which are quadratically nilpotent ($eta^2=0$), and algebras with PT and CPT adjoints can be constructed. These algebras obey different anticommutation relations: $etaeta^{PT}+eta^{PT}eta=-1$, where $eta^{PT}$ is the PT adjoint of $eta$, and $etaeta^{CPT}+eta^{CPT}eta=1$, where $eta^{CPT}$ is the CPT adjoint of $eta$. This paper presents matrix representations for the operator $eta$ and its PT and CPT adjoints in two and four dimensions. A PT-symmetric second-quantized Hamiltonian modeled on quantum electrodynamics that describes a system of interacting fermions and bosons is constructed within this framework and is solved exactly.
We study the two-dimensional massless Dirac equation for a potential that is allowed to depend on the energy and on one of the spatial variables. After determining a modified orthogonality relation and norm for such systems, we present an application involving an energy-dependent version of the hyperbolic Scarf potential. We construct closed-form bound state solutions of the associated Dirac equation.
We present a systematic method to calculate the universal scaling functions for the critical Casimir force and the according potential of the two-dimensional Ising model with various boundary conditions. Therefore we start with the dimer representation of the corresponding partition function $Z$ on an $Ltimes M$ square lattice, wrapped around a torus with aspect ratio $rho=L/M$. By assuming periodic boundary conditions and translational invariance in at least one direction, we systematically reduce the problem to a $2times2$ transfer matrix representation. For the torus we first reproduce the results by Kaufman and then give a detailed calculation of the scaling functions. Afterwards we present the calculation for the cylinder with open boundary conditions. All scaling functions are given in form of combinations of infinite products and integrals. Our results reproduce the known scaling functions in the limit of thin films $rhoto 0$. Additionally, for the cylinder at criticality our results confirm the predictions from conformal field theory.
One-parameter family of discrete-time quantum-walk models on the square lattice, which includes the Grover-walk model as a special case, is analytically studied. Convergence in the long-time limit $t to infty$ of all joint moments of two components of walkers pseudovelocity, $X_t/t$ and $Y_t/t$, is proved and the probability density of limit distribution is derived. Dependence of the two-dimensional limit density function on the parameter of quantum coin and initial four-component qudit of quantum walker is determined. Symmetry of limit distribution on a plane and localization around the origin are completely controlled. Comparison with numerical results of direct computer-simulations is also shown.