No Arabic abstract
We present an efficient implementation of the Bethe-Salpeter equation (BSE) method for obtaining core-level spectra including x-ray absorption (XAS), x-ray emission (XES), and both resonant and non-resonant inelastic x-ray scattering spectra (N/RIXS). Calculations are based on density functional theory (DFT) electronic structures generated either by abinit or Quantumespresso, both plane-wave basis, pseudopotential codes. This electronic structure is improved through the inclusion of a GW self energy. The projector augmented wave technique is used to evaluate transition matrix elements between core-level and band states. Final two-particle scattering states are obtained with the NIST core-level BSE solver (NBSE). We have previously reported this implementation, which we refer to as ocean (Obtaining Core Excitations from Ab initio electronic structure and NBSE) [Phys. Rev. B 83, 115106 (2011)]. Here, we present additional efficiencies that enable us to evaluate spectra for systems ten times larger than previously possible; containing up to a few thousand electrons. These improvements include the implementation of optimal basis functions that reduce the cost of the initial DFT calculations, more complete parallelization of the screening calculation and of the action of the BSE Hamiltonian, and various memory reductions. Scaling is demonstrated on supercells of SrTiO_3 and example spectra for the organic light emitting molecule Tris-(8-hydroxyquinoline)aluminum (Alq_3 ) are presented. The ability to perform large-scale spectral calculations is particularly advantageous for investigating dilute or non-periodic systems such as doped materials, amorphous systems, or complex nano-structures.
We present a hybrid approach for GW/Bethe-Salpeter Equation (BSE) calculations of core excitation spectra, including x-ray absorption (XAS), electron energy loss spectra (EELS), and non-resonant inelastic x-ray scattering (NRIXS). The method is based on {it ab initio} wavefunctions from the plane-wave pseudopotential code ABINIT; atomic core-level states and projector augmented wave (PAW) transition matrix elements; the NIST core-level BSE solver; and a many-pole GW self-energy model to account for final-state broadening and self-energy shifts. Multiplet effects are also accounted for. The approach is implemented using an interface dubbed OCEAN (Obtaining Core Excitations using ABINIT and NBSE). To demonstrate the utility of the code we present results for the K-edges in LiF as probed by XAS and NRIXS, the K-edges of KCl as probed by XAS, the Ti L_2,3-edge in SrTiO_3 as probed by XAS, and the Mg L_2,3-edge in MgO as probed by XAS. We compare the results to experiments and results obtained using other theoretical approaches.
The off-mass shell scattering amplitude, satisfying the Bethe-Salpeter equation for spinless particles in Minkowski space with the ladder kernel, is computed for the first time.
The accurate prediction of singlet and triplet excitation energies is of significant fundamental interest and is critical for many applications. An area of intense research, most calculations of singlet and triplet energies use time-dependent density functional theory (TDDFT) in conjunction with an approximate exchange-correlation functional. In this work, we examine and critically assess an alternative method for predicting low-lying neutral excitations with similar computational cost, the ab initio Bethe-Salpeter equation (BSE) approach, and compare results against high-accuracy wavefunction-based methods. We consider singlet and triplet excitations of 27 prototypical organic molecules, including members of Thiels set, the acene series, and several aromatic hydrocarbons exhibiting charge-transfer-like excitations. Analogous to its impact in TDDFT, we find that the Tamm-Dancoff approximation (TDA) overcomes triplet instabilities in the BSE approach, improving both triplet and singlet energetics relatively to higher level theories. Finally, we find that BSE-TDA calculations built on good DFT starting points, such as those utilizing optimally-tuned range-separated hybrid functionals, can yield accurate singlet and triplet excitation energies for gas-phase organic molecules.
Using a well-established effective interaction in a rainbow-ladder truncation model of QCD, we fix the remaining model parameter to the bottomonium ground-state spectrum in a covariant Bethe-Salpeter equation approach and find surprisingly good agreement with the available experimental data including the 2^{--} Upsilon(1D) state. Furthermore, we investigate the consequences of such a fit for charmonium and light-quark ground states.
We present a method to directly solving the Bethe-Salpeter equation in Minkowski space, both for bound and scattering states. It is based on a proper treatment of the singularities which appear in the kernel, propagators and Bethe-Salpeter amplitude itself. The off-mass shell scattering amplitude for spinless particles interacting by a one boson exchange is computed for the first time.