We use a multivariate formulation of sequential Monte Carlo filter that utilizes mechanistic models for Ebola virus propagation and available incidence data to simultaneously estimate the disease progression states and the model parameters. This method has the advantage of performing the inference online as the new data becomes available and estimates the evolution of basic reproductive ratio $R_0(t)$ of the Ebola outbreak through time. Our analysis identifies a peak in the basic reproductive ratio close to the time when Ebola cases were reported in Europe and the USA.