Reconstructing real-valued functions from unsigned coefficients with respect to wavelet and other frames


Abstract in English

In this paper we consider the following problem of phase retrieval: Given a collection of real-valued band-limited functions ${psi_{lambda}}_{lambdain Lambda}subset L^2(mathbb{R}^d)$ that constitutes a semi-discrete frame, we ask whether any real-valued function $f in L^2(mathbb{R}^d)$ can be uniquely recovered from its unsigned convolutions ${{|f ast psi_lambda|}_{lambda in Lambda}}$. We find that under some mild assumptions on the semi-discrete frame and if $f$ has exponential decay at $infty$, it suffices to know $|f ast psi_lambda|$ on suitably fine lattices to uniquely determine $f$ (up to a global sign factor). We further establish a local stability property of our reconstruction problem. Finally, for two concrete examples of a (discrete) frame of $L^2(mathbb{R}^d)$, $d=1,2$, we show that through sufficient oversampling one obtains a frame such that any real-valued function with exponential decay can be uniquely recovered from its unsigned frame coefficients.

Download