No Arabic abstract
Topologically ordered phase has emerged as one of most exciting concepts that not only broadens our understanding of phases of matter, but also has been found to have potential application in fault-tolerant quantum computation. The direct measurement of topological properties, however, is still a challenge especially in interacting quantum system. Here we realize one-dimensional Heisenberg spin chains using nuclear magnetic resonance simulators and observe the interaction-induced topological transitions, where Berry curvature in the parameter space of Hamiltonian is probed by means of dynamical response and then the first Chern number is extracted by integrating the curvature over the closed surface. The utilized experimental method provides a powerful means to explore topological phenomena in quantum systems with many-body interactions.
The discovery of topological phases in condensed matter systems has changed the modern conception of phases of matter. The global nature of topological ordering makes these phases robust and hence promising for applications. However, the non-locality of this ordering makes direct experimental studies an outstanding challenge, even in the simplest model topological systems, and interactions among the constituent particles adds to this challenge. Here we demonstrate a novel dynamical method to explore topological phases in both interacting and non-interacting systems, by employing the exquisite control afforded by state-of-the-art superconducting quantum circuits. We utilize this method to experimentally explore the well-known Haldane model of topological phase transitions by directly measuring the topological invariants of the system. We construct the topological phase diagram of this model and visualize the microscopic evolution of states across the phase transition, tasks whose experimental realizations have remained elusive. Furthermore, we developed a new qubit architecture that allows simultaneous control over every term in a two-qubit Hamiltonian, with which we extend our studies to an interacting Hamiltonian and discover the emergence of an interaction-induced topological phase. Our implementation, involving the measurement of both global and local textures of quantum systems, is close to the original idea of quantum simulation as envisioned by R. Feynman, where a controllable quantum system is used to investigate otherwise inaccessible quantum phenomena. This approach demonstrates the potential of superconducting qubits for quantum simulation and establishes a powerful platform for the study of topological phases in quantum systems.
We report on the generation, subsequent oscillation and interaction of a pair of matter wave dark solitons. These are created by releasing a Bose-Einstein condensate from a double well potential into a harmonic trap in the crossover regime between one dimension (1D) and three dimensions (3D). The oscillation of the solitons is observed and the frequency is in quantitative agreement with simulations using the Gross-Pitaevskii equation. An effective particle picture is developed and reveals that the deviation of the observed frequencies from the asymptotic prediction $ u_{z}/sqrt{2}$, where $ u_{z}$ is the longitudinal trapping frequency, results from the dimensionality of the system and the interaction between the solitons.
Dynamical quantum phase transitions (DQPTs) extend the concept of phase transitions and thus universality to the non-equilibrium regime. In this letter, we investigate DQPTs in a string of ions simulating interacting transverse-field Ising models. We observe non-equilibrium dynamics induced by a quantum quench and show for strings of up to 10 ions the direct detection of DQPTs by measuring a quantity that becomes non-analytic in time in the thermodynamic limit. Moreover, we provide a link between DQPTs and the dynamics of other relevant quantities such as the magnetization, and we establish a connection between DQPTs and entanglement production.
Magnetic monopoles can appear as emergent structures in a wide range of physical settings, ranging from spin ice to Weyl points in semimetals. Here, a distribution of synthetic (Berry) monopoles in parameter space of a slowly changing external magnetic field is demonstrated in a system of interacting spin-$frac{1}{2}$ particles with broken spherical symmetry. These monopoles can be found at points where the external field is nonzero. The spin-spin interaction provides a mechanism for splitting the synthetic local magnetic charges until their magnitude reach the smallest allowed value $frac{1}{2}$. For certain states, a nonzero net charge can be created in an arbitrarily large finite region of parameter space. The monopole field textures contain non-monopolar contributions in the presence of spin-spin interaction.
We report macroscopic magnetic measurements carried out in order to detect and characterize field-induced quantum entanglement in low dimensional spin systems. We analyze the pyroborate MgMnB_2O_5 and the and the warwickite MgTiOBO_3, systems with spin 5/2 and 1/2 respectively. By using the magnetic susceptibility as an entanglement witness we are able to quantify entanglement as a function of temperature and magnetic field. In addition, we experimentally distinguish for the first time a random singlet phase from a Griffiths phase. This analysis opens the possibility of a more detailed characterization of low dimensional materials.