Do you want to publish a course? Click here

Improved estimate of the cross section for inverse beta decay

57   0   0.0 ( 0 )
 Added by Artur Ankowski
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

The hypothesis of the conserved vector current, relating the vector weak and isovector electromagnetic currents, plays a fundamental role in quantitative description of neutrino interactions. Despite being experimentally confirmed with great precision, it is not fully implemented in existing calculations of the cross section for inverse beta decay, the dominant mechanism of antineutrino scattering at energies below a few tens of MeV. In this article, I estimate the corresponding cross section and its uncertainty, ensuring conservation of the vector current. While converging to previous calculations at energies of several MeV, the obtained result is appreciably lower and predicts more directional positron production near the reaction threshold. These findings suggest that in the current estimate of the flux of geologically produced antineutrinos the 232Th and 238U components may be underestimated by 6.1 and 3.7%, respectively. The proposed search for light sterile neutrinos using a 144Ce--144Pr source is predicted to collect the total event rate lower by 3% than previously estimated and to observe a spectral distortion that could be misinterpreted as an oscillation signal. In reactor-antineutrino experiments, together with a re-evaluation of the positron spectra, the predicted event rate should be reduced by 0.9%, diminishing the size of the reported anomaly.



rate research

Read More

We review recent developments on the role of neutrino mixing in the inverse beta decay of accelerated protons. We show that calculations in the inertial and comoving frames agree (thus preserving General Covariance) only when taking neutrino asymptotic states to be flavor (rather than mass) eigenstates. Our conclusions are valid in the approximation in which Pontecorvo states are correctly representing neutrino flavor states. We speculate about the general case involving exact flavor states and finally comment on other approaches recently appeared in literature.
In the inverse seesaw extension of the standard model, supersymmetric or non-supersymmetric, while the light left-handed neutrinos are Majorana, the heavy right-handed neutrinos are pseudo-Dirac fermions. We show how one of these latter category of particles can contribute quite significantly to neutrinoless double beta decay. The neutrino virtuality momentum is found to play a crucial role in the non-standard contributions leading to the prediction of the pseudo-Dirac fermion mass in the range of $120, {MeV}-500, {MeV}$. When the Dirac neutrino mass matrix in the inverse seesaw formula is similar to the up-quark mass matrix, characteristic of high scale quark-lepton symmetric origin, the predicted branching ratios for lepton flavor violating decays are also found to be closer to the accessible range of ongoing experiments.
Inspired by the recent TOTEM data for the elastic proton -- proton ($pp$) scattering at $sqrt{s} =$ 8 and 13 TeV, we update previous studies of the differential cross sections using the Phillips -- Barger (PB) model, which parametrizes the amplitude in terms of a small number of free parameters. We demonstrate that this model is able to describe the recent $pp$ data on a statistically acceptable way. Additionally, we perform separate fits of the $pp$ data for each center - of - mass energy and propose a parametrization for the energy dependence of the parameters present in the PB model. As a consequence, we are able to present the PB predictions for the elastic proton - proton cross section at $sqrt{s} = 546$ GeV and $1.8$ TeV, which are compared with the existing antiproton -- proton ($bar{p}p$) data. We show that the PB predictions, constrained by the $pp$ data, are not able to describe the $bar{p}p$ data. In particular, the PB model predicts a dip in the differential cross section that is not present in the $bar{p}p$ data. Such result suggests the contribution of the Odderon exchange at high energies.
We analyze the impact of a measurement, or of an improved bound, on theta_{13} for the determination of the effective neutrino mass in neutrino-less double beta decay and cosmology. In particular, we discuss how an improved limit on (or a specific value of) theta_{13} can influence the determination of the neutrino mass spectrum via neutrino-less double beta decay. We also discuss the interplay with improved cosmological neutrino mass searches.
We point out that the LDMX (Light Dark Matter eXperiment) detector design, conceived to search for sub-GeV dark matter, will also have very advantageous characteristics to pursue electron-nucleus scattering measurements of direct relevance to the neutrino program at DUNE and elsewhere. These characteristics include a 4-GeV electron beam, a precision tracker, electromagnetic and hadronic calorimeters with near 2$pi$ azimuthal acceptance from the forward beam axis out to $sim$40$^circ$ angle, and low reconstruction energy threshold. LDMX thus could provide (semi)exclusive cross section measurements, with detailed information about final-state electrons, pions, protons, and neutrons. We compare the predictions of two widely used neutrino generators (GENIE, GiBUU) in the LDMX region of acceptance to illustrate the large modeling discrepancies in electron-nucleus interactions at DUNE-like kinematics. We argue that discriminating between these predictions is well within the capabilities of the LDMX detector.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا