Do you want to publish a course? Click here

An extension of two-Higgs-doublet model and the excesses of 750 GeV diphoton, muon g-2 and $htomutau$

53   0   0.0 ( 0 )
 Added by Xiao-Fang Han
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we simultaneously explain the excesses of the 750 GeV diphoton, muon g-2 and $hto mutau$ in an extension of the two-Higgs-doublet model (2HDM) with additional vector-like fermions and a CP-odd scalar singlet ($P$) which is identified as the 750 GeV resonance. This 750 GeV resonance has a mixing with the CP-odd scalar ($A$) in 2HDM, which leads to a coupling between $P$ and the SM particles as well as a coupling between $A$ and the vector-like fermions. Such a mixing and couplings are strongly constrained by $tautomugamma$, muon g-2 and the 750 GeV diphoton data. We scan over the parameter space and find that such an extension can simultaneously account for the observed excesses of 750 GeV diphoton, muon g-2 and $hto mutau$. The 750 GeV resonance decays in exotic modes, such as $Pto hA$, $Pto HZ$, $Pto HA$ and $Pto W^pm H^mp$, and its width can be dozens of GeV and is sensitive to the mixing angle.



rate research

Read More

We examine the $hto mutau$ and muon g-2 in the exact alignment limit of two-Higgs-doublet model. In this case, the couplings of the SM-like Higgs to the SM particles are the same as the Higgs couplings in the SM at the tree level, and the tree-level lepton-flavor-violating coupling $hmutau$ is absent. We assume the lepton-flavor-violating $mutau$ excess observed by CMS to be respectively from the other neutral Higgses, $H$ and $A$, which almost degenerates with the SM-like Higgs at the 125 GeV. After imposing the relevant theoretical constraints and experimental constraints from the precision electroweak data, $B$-meson decays, $tau$ decays and Higgs searches, we find that the muon g-2 anomaly and $mutau$ excess favor the small lepton Yukawa coupling and top Yukawa coupling of the non-SM-like Higgs around 125 GeV, and the lepton-flavor-violating coupling is sensitive to another heavy neutral Higgs mass. In addition, if the $mutau$ excess is from $H$ around 125 GeV, the experimental data of the heavy Higgs decaying into $mutau$ favor $m_A>230$ GeV for a relatively large $Hbar{t}t$ coupling.
80 - Xiao-Fang Han , Lei Wang , Lei Wu 2016
In this paper, we interpret the 750 GeV diphoton excess in the Zee-Babu extension of the two-Higgs-doublet model by introducing a top partner ($T$)/bottom partner ($B$). In the alignment limit, the 750 GeV resonance is identified as the heavy CP-even Higgs boson ($H$), which can be sizably produced via the QCD process $pp to Tbar{T}$ or $pp to Bbar{B}$ followed by the decay $Tto Ht$ or $B to Hb$. The diphoton decay rate of $H$ is greatly enhanced by the charged singlet scalars predicted in the Zee-Babu extension and the total width of $H$ can be as large as 7 GeV. Under the current LHC constraints, we scan the parameter space and find that such an extension can account for the observed diphoton excess.
54 - Xiao-Fang Han , Lei Wang 2015
We examine the implication of the 750 GeV diphoton resonance on the two-Higgs-doublet model imposing various theoretical and experimental constraints. The production rate of two-Higgs-doublet model is smaller than the cross section observed at the LHC by two order magnitude. In order to accommodate the 750 GeV diphoton resonance, we extend the two-Higgs-doublet model by introducing additional Higgs fields, and focus on two different extensions, an inert complex Higgs triplet and a real scalar septuplet. With the 125 GeV Higgs being agreement with the observed data, the production rate for the 750 GeV diphoton resonance can be enhanced to 0.6 fb for the former and 4.5 fb for the latter. The results of the latter are well consistent with the 750 GeV diphoton excess at the LHC.
120 - Tao Han , Sin Kyu Kang , 2015
We study the Two-Higgs-Doublet Model with the aligned Yukawa sector (A2HDM) in light of the observed excess measured in the muon anomalous magnetic moment. We take into account the existing theoretical and experimental constraints with up-to-date values and demonstrate that a phenomenologically interesting region of parameter space exists. With a detailed parameter scan, we show a much larger region of viable parameter space in this model beyond the limiting case Type X 2HDM as obtained before. It features the existence of light scalar states with masses $3$ GeV $lesssim m_H^{} lesssim 50$ GeV, or $ 10$ GeV $lesssim m_A^{} lesssim 130$ GeV, with enhanced couplings to tau leptons. The charged Higgs boson is typically heavier, with $200$ GeV $ lesssim m^{}_{H^+} lesssim 630$ GeV. The surviving parameter space is forced into the CP-conserving limit by EDM constraints. Some Standard Model observables may be significantly modified, including a possible new decay mode of the SM-like Higgs boson to four taus. We comment on future measurements and direct searches for those effects at the LHC as tests of the model.
In the E6 inspired composite Higgs model (E6CHM) the strongly interacting sector possesses an SU(6)times U(1)_Btimes U(1)_L global symmetry. Near scale fgtrsim 10 TeV the SU(6) symmetry is broken down to its SU(5) subgroup, that involves the standard model (SM) gauge group. This breakdown of SU(6) leads to a set of pseudo--Nambu--Goldstone bosons (pNGBs) including a SM--like Higgs and a SM singlet pseudoscalar A. Because of the interactions between A and exotic fermions, which ensure the approximate unification of the SM gauge couplings and anomaly cancellation in this model, the couplings of the pseudoscalar A to gauge bosons get induced. As a result, the SM singlet pNGB state A with mass around 750 GeV may give rise to sufficiently large cross section of ppto gammagamma that can be identified with the recently observed diphoton excess.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا