Do you want to publish a course? Click here

Non-Relativistic Anti-Snyder Model and Some Applications

368   0   0.0 ( 0 )
 Added by Chee Leong Ching
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the (2+1)-dimensional Dirac equation in a homogeneous magnetic field under the non-relativistic anti-Snyder model which is relevant to deformed special relativity (DSR) since it exhibits an intrinsic upper bound of the momentum of free particles. After setting up the formalism, exact eigen solutions are derived in momentum space representation and they are expressed in terms of finite orthogonal Romanovski polynomials. There is a finite maximum number of allowable bound states due to the orthogonality of the polynomials and the maximum energy is truncated at the maximum n. Similar to the minimal length case, the degeneracy of the Dirac-Landau levels in anti- Snyder model are modified and there are states that do not exist in the ordinary quantum mechanics limit. By taking zero mass limit, we explore the motion of effective zero mass charged Fermions in Graphene like material and obtained a maximum bound of deformed parameter. Furthermore, we consider the modified energy dispersion relations and its application in describing the behavior of neutrinos oscillation under modified commutation relations.



rate research

Read More

In this paper we study the Kepler problem in the non commutative Snyder scenario. We characterize the deformations in the Poisson bracket algebra under a mimic procedure from quantum standard formulations and taking into account a general recipe to build the noncommutative phase space coordinates (in the sense of Poisson brackets). We obtain an expression to the deformed potential, and then the consequences in the precession of the orbit of Mercury are calculated. This result allows us to find an estimated value for the non commutative deformation parameter introduced.
We describe a geometric and symmetry-based formulation of the equivalence principle in non-relativistic physics. It applies both on the classical and quantum levels and states that the Newtonian potential can be eliminated in favor of a curved and time-dependent spatial metric. It is this requirement that forces the gravitational mass to be equal to the inertial mass. We identify the symmetry responsible for the equivalence principle as the remnant of time-reparameterization symmetry of the relativistic theory. We also clarify the transformation properties of the Schroedinger wave-function under arbitrary changes of frame.
We derive the linearly perturbed matching conditions between a Schwarzschild spacetime region with stationary and axially symmetric perturbations and a FLRW spacetime with arbitrary perturbations. The matching hypersurface is also perturbed arbitrarily and, in all cases, the perturbations are decomposed into scalars using the Hodge operator on the sphere. This allows us to write down the matching conditions in a compact way. In particular, we find that the existence of a perturbed (rotating, stationary and vacuum) Schwarzschild cavity in a perturbed FLRW universe forces the cosmological perturbations to satisfy constraints that link rotational and gravitational wave perturbations. We also prove that if the perturbation on the FLRW side vanishes identically, then the vacuole must be perturbatively static and hence Schwarzschild. By the dual nature of the problem, the first result translates into links between rotational and gravitational wave perturbations on a perturbed Oppenheimer-Snyder model, where the perturbed FLRW dust collapses in a perturbed Schwarzschild environment which rotates in equilibrium. The second result implies in particular that no region described by FLRW can be a source of the Kerr metric.
124 - M. Presilla , O. Panella , P. Roy 2015
We obtain exact solutions of the (2+1) dimensional Dirac oscillator in a homogeneous magnetic field within the Anti-Snyder modified uncertainty relation characterized by a momentum cut-off ($pleq p_{text{max}}=1/ sqrt{beta}$). In ordinary quantum mechanics ($betato 0$) this system is known to have a single left-right chiral quantum phase transition (QPT). We show that a finite momentum cut-off modifies the spectrum introducing additional quantum phase transitions. It is also shown that the presence of momentum cut-off modifies the degeneracy of the states.
182 - B. Hamil , M. Merad , T. Birkandan 2020
The Snyder-de Sitter model is an extension of the Snyder model to a de Sitter background. It is called triply special relativity (TSR) because it is based on three fundamental parameters: speed of light, Planck mass, and the cosmological constant. In this paper, we study the three dimensional DKP oscillator for spin zero and one in the framework of Snyder-de Sitter algebra in momentum space. By using the technique of vector spherical harmonics the energy spectrum and the corresponding eigenfunctions are obtained for both cases.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا