Do you want to publish a course? Click here

Observation of Strong Radiation Pressure Forces from Squeezed Light on a Mechanical Oscillator

140   0   0.0 ( 0 )
 Added by Jeremy Clark
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum enhanced sensing is a powerful technique in which nonclassical states are used to improve the sensitivity of a measurement. For enhanced mechanical displacement sensing, squeezed states of light have been shown to reduce the photon counting noise that limits the measurement noise floor. It has long been predicted, however, that suppressing the noise floor with squeezed light should produce an unavoidable increase in radiation pressure noise that drives the mechanical system. Such nonclassical radiation pressure forces have thus far been hidden by insufficient measurement strengths and residual thermal mechanical motion. Since the ultimate measurement sensitivity relies on the delicate balance between these two noise sources, the limits of the quantum enhancement have not been observed. Using a microwave cavity optomechanical system, we observe the nonclassical radiation pressure noise that necessarily accompanies any quantum enhancement of the measurement precision. By varying both the magnitude and phase of the squeezing, we optimize the fundamental trade-off between mechanical imprecision and backaction noise in accordance with the Heisenberg uncertainty principle. As the strength of the measurement is further increased, radiation pressure forces eventually dominate the mechanical motion. In this regime, the optomechanical interaction can be exploited as an efficient quantum nondemolition (QND) measurement of the amplitude fluctuations of the light field. By overwhelming mechanical thermal noise with radiation pressure by two orders of magnitude, we demonstrate a mechanically-mediated measurement of the squeezing with an effective homodyne efficiency of 94%. Thus, with strong radiation pressures forces, mechanical motion enhances the measurement of nonclassical light, just as nonclassical light enhances the measurement of the motion.



rate research

Read More

Some predictions of quantum mechanics are in contrast with the macroscopic realm of everyday experience, in particular those originated by the Heisenberg uncertainty principle, encoded in the non-commutativity of some measurable operators. Nonetheless, in the last decade opto-mechanical experiments have actualized macroscopic mechanical oscillators exhibiting such non-classical properties. A key indicator is the asymmetry in the strength of the motional sidebands generated in an electromagnetic field that measures interferometrically the oscillator position. This asymmetry is a footprint of the quantum motion of the oscillator, being originated by the non-commutativity between its ladder operators. A further step on the path highlighting the quantum physics of macroscopic systems is the realization of strongly non-classical states and the consequent observation of a distinct quantum behavior. Here we extend indeed the analysis to a squeezed state of a macroscopic mechanical oscillator embedded in an optical cavity, produced by parametric effect originated by a suitable combination of optical fields. The motional sidebands assume a peculiar shape, related to the modified system dynamics, with asymmetric features revealing and quantifying the quantum component of the squeezed oscillator motion.
We experimentally investigate a mechanical squeezed state realized in a parametrically-modulated membrane resonator embedded in an optical cavity. We demonstrate that a quantum characteristic of the squeezed dynamics can be revealed and quantified even in a moderately warm oscillator, through the analysis of motional sidebands. We provide a theoretical framework for quantitatively interpreting the observations and present an extended comparison with the experiment. A notable result is that the spectral shape of each motional sideband provides a clear signature of a quantum mechanical squeezed state without the necessity of absolute calibrations, in particular in the regime where residual fluctuations in the squeezed quadrature are reduced below the zero-point level.
We investigate the output generation of squeezed radiation of a cavity photon mode coupled to another off-resonant bosonic excitation. By modulating in time their linear interaction, we predict high degree of output squeezing when the dispersive ultrastrong coupling regime is achieved, i.e., when the interaction rate becomes comparable to the frequency of the lowest energy mode. Our work paves the way to squeezed light generation in frequency domains where the ultrastrong coupling is obtained, e.g., solid-state resonators in the GHz, THz and mid-IR spectral range.
Single quantum emitters like atoms are well-known as non-classical light sources which can produce photons one by one at given times, with reduced intensity noise. However, the light field emitted by a single atom can exhibit much richer dynamics. A prominent example is the predicted ability for a single atom to produce quadrature-squeezed light, with sub-shot-noise amplitude or phase fluctuations. It has long been foreseen, though, that such squeezing would be at least an order of magnitude more difficult to observe than the emission of single photons. Squeezed beams have been generated using macroscopic and mesoscopic media down to a few tens of atoms, but despite experimental efforts, single-atom squeezing has so far escaped observation. Here we generate squeezed light with a single atom in a high-finesse optical resonator. The strong coupling of the atom to the cavity field induces a genuine quantum mechanical nonlinearity, several orders of magnitude larger than for usual macroscopic media. This produces observable quadrature squeezing with an excitation beam containing on average only two photons per system lifetime. In sharp contrast to the emission of single photons, the squeezed light stems from the quantum coherence of photon pairs emitted from the system. The ability of a single atom to induce strong coherent interactions between propagating photons opens up new perspectives for photonic quantum logic with single emitters
137 - Alberto Barchielli 2015
The quantum stochastic Schroedinger equation or Hudson-Parthasareathy (HP) equation is a powerful tool to construct unitary dilations of quantum dynamical semigroups and to develop the theory of measurements in continuous time via the construction of output fields. An important feature of such an equation is that it allows to treat not only absorption and emission of quanta, but also scattering processes, which however had very few applications in physical modelling. Moreover, recent developments have shown that also some non-Markovian dynamics can be generated by suitable choices of the state of the quantum noises involved in the HP-equation. This paper is devoted to an application involving these two features, non-Markovianity and scattering process. We consider a micro-mirror mounted on a vibrating structure and reflecting a laser beam, a process giving rise to a radiation-pressure force on the mirror. We show that this process needs the scattering part of the HP-equation to be described. On the other side, non-Markovianity is introduced by the dissipation due to the interaction with some thermal environment which we represent by a phonon field, with a nearly arbitrary excitation spectrum, and by the introduction of phase noise in the laser beam. Finally, we study the full power spectrum of the reflected light and we show how the laser beam can be used as a temperature probe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا